Ultracold fermions in two and three dimensions

Igor Boettcher

Institute for Theoretical Physics, University of Heidelberg

with S. Diehl, J. M. Pawlowski, and C. Wetterich
Hirschegg, 27.8. 2012

Outline of the talk

- Introduction:

The many-body problem in ultracold atoms BCS-BEC crossover and Unitary Fermi gas

- Functional Renormalization Group study: Contact in the Unitary Fermi gas
The two-dimensional BCS-BEC crossover

The many-body problem

The many-body problem

 \%
possibility of a statistical description

collective degrees of freedom

The many-body problem

$1^{\text {st }}$ step: Find the right Hamiltonian H

$2^{\text {nd }}$ step: Determine the partition function Z

$$
Z(\mu, T)=\operatorname{Tr}\left(e^{-\beta(H-\mu N)}\right)
$$

The many-body problem

$1^{\text {st }}$ step: Find the rigi it :-ramiltonian H

H is known for cold atoms and QCD!

$2^{\text {nd }}$ step: Determine the partition function Z

$$
Z(\mu, T)=\operatorname{Tr}\left(e^{-\beta(H-\mu N)}\right)
$$

The many-body problem

$1^{\text {st }}$ step: Find the rigi i^{4} :-amiltonian H
$2^{\text {nd }}$ step: Determine the partition function Z

$$
Z(\mu, T)=\operatorname{Tr}\left(e^{-\beta(H-\mu N)}\right)=\underbrace{\int \mathrm{D} \phi e^{-S[\phi]}}_{\text {path integral }}
$$

Euclidean quantum field theory

Shopping list

What are the generic features of quantum many-body systems?

What are reliable theoretical methods to describe such systems?

What observables reveal advancements and short-comings of theory?

Shopping list

neutron stars

What are the generic features of auantum manv-body systems?
high-Tc superconductors vvirat are ienadie meoretical inetious to describe such systems?

What observables reveal advancements and short-cominc̣s nf thenrv? heavy ion collisions
nuclear matter
quark gluon plasma

Shopping list

Theory

Experiments
 with cold atoms

Phase diagram and Equation of state
$P(\mu, T)=\frac{k_{\mathrm{B}} T}{V} \log Z(\mu, T)$
Density distribution
Transport coefficients $\eta(\mu, T)$

Density images
Collective mode frequencies and damping constants

Expansion after release from trap

Response functions

Shopping list

Theory

Experiments
 with cold atoms

Phase diagram and Equation of state
$P(\mu, T)=\frac{k_{\mathrm{B}} T}{V} \log Z(\mu, T)$
Density distribution
Transport coefficients $\eta(\mu, T)$

Density images
Collective mode frequencies and damping constants

Expansion after release from trap

Response functions

The equation of state

Classical ideal gas: $\quad P(n, T)=n k_{B} T$

Virial expansion for interacting gas:

$$
P(n, T)=n k_{B} T\left(1+B_{2}(T) n+\ldots\right)
$$

Van-der-Waals equation of state:

$$
P(n, T)=\frac{n k_{B} T}{1-b n}-a n^{2} \simeq n k_{B} T\left(1+\left(b-\frac{a}{k_{B} T}\right) n+\ldots\right)
$$

Pressure $\mathrm{P}(\mu, \mathrm{T})$

Bose gas

Figure 2.1: Pressure $\hat{P}=P a^{5} m / \hbar^{2}$ as a function of \hat{T} and $\hat{\mu}$

$$
\hat{T}=T a^{2} m k_{B} / \hbar^{2}
$$

$$
\hat{\mu}=\mu a^{2} m / \hbar^{2}
$$

Density $\mathrm{n}=(\partial \mathrm{P} / \partial \mu)_{\mathrm{T}}$

Bose gas

Figure 2.3: Density $\hat{n}=n a^{3}$ as a function of \hat{T} and $\hat{\mu}$
$\hat{\uparrow}=T a^{2} m k_{B} / \hbar^{2}$

$$
\hat{\mu}=\mu a^{2} m / \hbar^{2}
$$

Isothermal compressibility $\left(\partial^{2} \mathrm{P} / \partial \mu^{2}\right)_{\mathrm{T}}$

Bose gas

Figure 2.5: $\hat{P}^{\mu \mu}=P^{\mu \mu} a \hbar^{2} / m$ as a function of \hat{T} and $\hat{\mu}$
$\hat{T}=T a^{2} m k_{B} / \hbar^{2}$

$$
\hat{\mu}=\mu a^{2} m / \hbar^{2}
$$

Isothermal compressibility $\left(\partial^{2} \mathrm{P} / \partial \mu^{2}\right)_{\mathrm{T}}$

Bose gas

Position of critical line: phase diagram

Superfluid phase transition
 ```nd \hat{\mu}```

$\hat{T}=T a^{2} m k_{B} / \hbar^{2}$

$$
\hat{\mu}=\mu a^{2} m / \hbar^{2}
$$

Thermodynamics from density profiles

$$
P(\mu, T) \rightarrow P\left(\mu-V_{\text {ext }}(\vec{x}), T\right)
$$

local density approximation

$$
P\left(\mu_{z}, T\right)=\frac{m \omega_{r}^{2}}{2 \pi} \bar{n}(z),
$$

T.-L. Ho, Q. Zhou, Nature Physics 6, 131 (2010)

Figure: S. Nascimbène et al., New Journal of Physics 12 (2010) 103026

Thermodynamics from density profiles

M. J. H. Ku et al., Science 335, 563-567 (2012)

imbalanced two-component

Fermi gas at $\mathrm{T}=0$:

$$
\begin{aligned}
& P\left(\mu_{1}, \mu_{2}, a\right)= \\
& \quad P_{0}\left(\mu_{1}\right) h\left(\delta_{1} \equiv \frac{\hbar}{\sqrt{2 m \mu_{1}} a}, \eta \equiv \frac{\mu_{2}}{\mu_{1}}\right)
\end{aligned}
$$

N. Navon et al., Science 328, 729 (2010)

The BCS-BEC Crossover

Two cornerstones of quantum condensation:

BCS

BEC

Cooper pairing of weakly attractive fermions

Bose condensation of weakly repulsive bosons

The BCS-BEC Crossover

Two cornerstones of quantum condensation:

BCS

BEC

The BCS-BEC Crossover

Two cornerstones of quantum condensation:

The BCS-BEC Crossover

3D BCS-BEC crossover

(results from Functional Renormalization Group)

Microscopic Model

Many-body Hamiltonian

$$
\hat{H}=\int \mathrm{d}^{3} x\left(\sum_{\sigma=1,2} \hat{\psi}_{\sigma}^{\dagger}\left(-\nabla^{2}\right) \hat{\psi}_{\sigma}+\lambda_{\psi, \wedge} \hat{\psi}_{1}^{\dagger} \hat{\psi}_{2}^{\dagger} \hat{\psi}_{2} \hat{\psi}_{1}\right)
$$

Microscopic Model

Many-body Hamiltonian
$\hat{H}=\int \mathrm{d}^{3} x\left(\sum_{\sigma=1,2} \hat{\psi}_{\sigma}^{\dagger}\left(-\nabla^{2}\right) \hat{\psi}_{\sigma}+\lambda_{\psi, \Lambda} \hat{\psi}_{1}^{\dagger} \hat{\psi}_{2}^{\dagger} \hat{\psi}_{2} \hat{\psi}_{1}\right)$
Microscopic action

$$
\begin{aligned}
S[\varphi, \psi]=\int_{X} & \left(\sum_{\sigma=1,2} \psi_{\sigma}^{*}\left(\partial_{\tau}-\nabla^{2}-\mu\right) \psi_{\sigma}+m_{\varphi, \Lambda}^{2} \varphi^{*} \varphi\right. \\
& \left.-h_{\varphi}\left(\varphi^{*} \psi_{1} \psi_{2}-\varphi \psi_{1}^{*} \psi_{2}^{*}\right)\right)
\end{aligned}
$$

Macroscopic physics

How to compute the partition function?

$$
Z(\mu, T)=\int \mathrm{D} \varphi \mathrm{D} \psi \mathrm{e}^{-S[\varphi, \psi]} \quad \text { Integration }
$$

Macroscopic physics

How to compute the partition function?

$$
Z(\mu, T)=\int \mathrm{D} \varphi \mathrm{D} \psi \mathrm{e}^{-S[\varphi, \psi]}
$$

scale dependent partition function

Macroscopic physics

How to compute the partition function?

$$
\begin{aligned}
Z(\mu, T)= & \int \mathrm{D} \varphi \mathrm{D} \psi \mathrm{e}^{-S[\varphi, \psi]} \\
& \text { scale dependent partition function }
\end{aligned}
$$

$\partial_{k} Z_{k}(\mu, T)=\ldots \quad$ Solve flow equation

Wetterich equation

$\Gamma[\Phi]=J \cdot \Phi-\log Z[J] \quad$ effective action

Wetterich equation

$$
\Gamma[\Phi]=J \cdot \Phi-\log Z[J] \quad \text { effective action }
$$

$$
\partial_{k} \Gamma_{k}=\frac{1}{2} \mathrm{~S} \operatorname{Tr}\left(\frac{1}{\Gamma_{k}^{(2)}+R_{k}} \partial_{k} R_{k}\right)
$$

$$
\Gamma_{k=\Lambda}=S \xrightarrow{\text { fluctuations }} \quad \Gamma_{k=0}=\Gamma
$$

Microphysics
Macrophysics

Contact in the BCS-BEC Crossover

Momentum distribution

Ideal Fermi gas: Fermi-Dirac distribution

Momentum distribution

Ideal Fermi gas: Fermi-Dirac distribution

Momentum distribution

Ideal Fermi gas: Fermi-Dirac distribution

Momentum distribution

$$
n_{\vec{p} \sigma} \simeq \frac{C}{p^{4}}
$$

Tan contact C

Several exact relations, e.g.:

$$
\begin{gathered}
\frac{1}{V} \frac{d E}{d(-1 / a)}=\frac{C}{4 \pi M} \\
E=\frac{C}{4 \pi M a}+\sum_{\sigma=1,2} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p^{2}}{2 M}\left(n_{\vec{p} \sigma}-\frac{C}{p^{4}}\right)
\end{gathered}
$$

Contact from the FRG

$$
n_{\vec{p} \sigma}=-\int_{p_{0}} G_{\psi \sigma}\left(p_{0}, \vec{p}\right)
$$

full macroscopic propagator

Contact from the FRG

$$
n_{\vec{p} \sigma}=-\int_{p_{0}} \sigma_{\psi \sigma}\left(p_{0}, \vec{p}\right)
$$

full macroscopic propagator

Contact from the FRG

Factorization of the RG flow for large p:

$$
\partial_{k} G_{\psi, k}^{-1}(P) \simeq \frac{4}{-\mathrm{i} p_{0}+p^{2}-\mu} \partial_{k} C_{k}
$$

Contact from the FRG

Factorization of the RG flow for large p:

$$
\partial_{k} G_{\psi, k}^{-1}(P) \simeq \frac{4}{-\mathrm{i} p_{0}+p^{2}-\mu} \partial_{k} C_{k}
$$

Contact from the FRG

Factorization of the RG flow for large p:

$$
\partial_{k} G_{\psi, k}^{-1}(P) \simeq \frac{4}{-\mathrm{i} p_{0}+p^{2}-\mu} \partial_{k} C_{k}
$$

Flowing contact

$$
\partial_{k} C_{k}=\ldots
$$

Contact from the FRG

Universal regime is enhanced for the Unitary Fermi gas

$$
\Sigma_{\psi}(P) \simeq \frac{4 C}{-\mathrm{i} p_{0}+p^{2}-\mu}-\delta \mu
$$

Contact from the FRG

Universal regime is enhanced for the Unitary

 Fermi gas$$
\Sigma_{\psi}(P) \simeq \frac{4 C}{-\mathrm{i} p_{0}+p^{2}-\mu}-\delta \mu
$$

Contact from the FRG

Temperature dependent contact of the Unitary Fermi gas

Contact from the FRG

Contact at $\mathrm{T}=0$ in the BCS-BEC crossover

Contact from the FRG

Momentum distribution of the Unitary Fermi Gas at the critical temperature

Increase of density

Contribution from high energetic particles to the density

$$
\begin{aligned}
& n=2 \int \frac{\mathrm{~d}^{3} p}{(2 \pi)^{3}} n_{\vec{p} \sigma} \\
& \frac{\delta n^{(C)}}{n}=27.5 \% \text { at Tc }
\end{aligned}
$$

Substantial effect on $\frac{T_{c}}{T_{F}} \propto \frac{T_{c}}{n^{2 / 3}}$

Two-dimensional BCS-BEC Crossover

Two-dimensional BCS-BEC Crossover

Why two dimensions?

Two-dimensional BCS-BEC Crossover

Why two dimensions?

- Enhanced effects of quantum fluctuations \rightarrow test and improve elaborate methods

Two-dimensional BCS-BEC Crossover

Why two dimensions?

- Enhanced effects of quantum fluctuations \rightarrow test and improve elaborate methods
- Understand pairing in two dimensions \rightarrow high temperature superconductors

Two-dimensional BCS-BEC Crossover

Why two dimensions?

- Enhanced effects of quantum fluctuations \rightarrow test and improve elaborate methods
- Understand pairing in two dimensions \rightarrow high temperature superconductors

How?

Two-dimensional BCS-BEC Crossover

Why two dimensions?

- Enhanced effects of quantum fluctuations \rightarrow test and improve elaborate methods
- Understand pairing in two dimensions \rightarrow high temperature superconductors

How?

Highly anisotropic traps!

What is different?

Scattering physics in two dimensions

$$
\begin{aligned}
f_{2 \mathrm{~d}}(q) & \sim \frac{1}{\log \left(1 / q^{2} a_{2 \mathrm{~d}}^{2}\right)+\mathrm{i} \pi+\ldots} \\
f_{3 \mathrm{~d}}(q) & \sim \frac{1}{-\frac{1}{a}+\frac{1}{2} r_{\mathrm{e}} q^{2}-\mathrm{i} q+\ldots}
\end{aligned}
$$

Scattering amplitude

What is different?

Scattering physics in two dimensions

$$
\begin{aligned}
f_{2 \mathrm{~d}}(q) & \sim \frac{1}{\log \left(1 / q^{2} a_{2 \mathrm{~d}}^{2}\right)+\mathrm{i} \pi+\ldots} \\
f_{3 \mathrm{~d}}(q) & \sim \frac{1}{-\frac{1}{a}+\frac{1}{2} r_{\mathrm{e}} q^{2}-\mathrm{i} q+\ldots}
\end{aligned}
$$

Scattering amplitude

Crossover parameter $\log \left(k_{\mathrm{F}} \mathrm{a}_{2 \mathrm{~d}}\right)$

What is different?

Scattering physics in two dimensions

$$
\begin{aligned}
f_{2 \mathrm{~d}}(q) & \sim \frac{1}{\log \left(1 / q^{2} a_{2 \mathrm{~d}}^{2}\right)+\mathrm{i} \pi+\ldots} \\
f_{3 \mathrm{~d}}(q) & \sim \frac{1}{-\frac{1}{a}+\frac{1}{2} r_{\mathrm{e}} q^{2}-\mathrm{i} q+\ldots}
\end{aligned}
$$

Scattering amplitude

Crossover parameter $\log \left(k_{\mathrm{F}} a_{2 \mathrm{~d}}\right)$
No scale invariance, but strong correlations for

$$
k_{\mathrm{F}} \sim \frac{1}{a_{2 \mathrm{~d}}}
$$

Equation of state at T=0

Equation of state at T=0

Superfluid phase transition

Superfluid phase transition

