Ultracold fermions in two and three dimensions

Igor Boettcher

Institute for Theoretical Physics, University of Heidelberg

with S. Diehl, J. M. Pawlowski, and C. Wetterich

Hirschegg, 27.8. 2012

Outline of the talk

Introduction:

The many-body problem in ultracold atoms BCS-BEC crossover and Unitary Fermi gas

Functional Renormalization Group study:
 Contact in the Unitary Fermi gas
 The two-dimensional BCS-BEC crossover

possibility of a statistical description

collective degrees of freedom

1st step: Find the right Hamiltonian H

2nd step: Determine the partition function Z

$$Z(\mu, T) = \operatorname{Tr}\left(e^{-\beta(H-\mu N)}\right)$$

1st step: Find the right Hamiltonian H

H is known for cold atoms and QCD!

2nd step: Determine the partition function Z

$$Z(\mu, T) = \operatorname{Tr}\left(e^{-\beta(H-\mu N)}\right)$$

1st step: Find the right Hamiltonian H

H is known for cold atoms and QCD!

2nd step: Determine the partition function Z

$$Z(\mu, T) = \operatorname{Tr}\left(e^{-\beta(H-\mu N)}\right) = \int \mathrm{D}\phi e^{-S[\phi]}$$

path integral

Euclidean quantum field theory

What are the generic features of quantum many-body systems?

What are reliable theoretical methods to describe such systems?

What observables reveal advancements and short-comings of theory?

neutron stars

What are the generic features of quantum many-body systems?

high-Tc superconductors

vvnat are reliable ineoretical methods to describe such systems?

What observables reveal advancements and short-comings of theory?

heavy ion collisions

nuclear matter

quark gluon plasma

Theory

Phase diagram and Equation of state

$$P(\mu, T) = \frac{k_{\rm B}T}{V} \log Z(\mu, T)$$

Density distribution

Transport coefficients

$$\eta(\mu, T)$$

Experiments with cold atoms

Density images

Collective mode frequencies and damping constants

Expansion after release from trap

Response functions

...

Theory

Phase diagram and Equation of state

$$P(\mu, T) = \frac{k_{\rm B}T}{V} \log Z(\mu, T)$$

Density distribution

Transport coefficients

$$\eta(\mu,T)$$

Experiments with cold atoms

Density images

Collective mode frequencies and damping constants

Expansion after release from trap

Response functions

The equation of state

Classical ideal gas: $P(n, T) = nk_BT$

Virial expansion for interacting gas:

$$P(n, T) = nk_B T(1 + B_2(T)n + \dots)$$

Van-der-Waals equation of state:

$$P(n,T) = \frac{nk_BT}{1-bn} - an^2 \simeq nk_BT \left(1 + (b - \frac{a}{k_BT})n + \dots\right)$$

Pressure $P(\mu,T)$

Bose gas

Figure 2.1: Pressure $\hat{P}=Pa^5m/\hbar^2$ as a function of \hat{T} and $\hat{\mu}$

Density $n = (\partial P / \partial \mu)_T$

Bose gas

Figure 2.3: Density $\hat{n} = na^3$ as a function of \hat{T} and $\hat{\mu}$

Isothermal compressibility $(\partial^2 P/\partial \mu^2)_T$

Bose gas

Figure 2.5: $\hat{P}^{\mu\mu}=P^{\mu\mu}a\hbar^2/m$ as a function of \hat{T} and $\hat{\mu}$

Isothermal compressibility $(\partial^2 P/\partial \mu^2)_T$

Thermodynamics from density profiles

$$P(\mu, T) \rightarrow P(\mu - V_{\text{ext}}(\vec{x}), T)$$

local density approximation

$$P(\mu_z, T) = \frac{m\omega_r^2}{2\pi} \overline{n}(z),$$

T.-L. Ho, Q. Zhou, Nature Physics **6**, 131 (2010)

Figure: S. Nascimbène et al., New Journal of Physics 12 (2010) 103026

Thermodynamics from density profiles

M. J. H. Ku et al., Science **335**, 563-567 (2012)

imbalanced two-component

Fermi gas at T=0:

$$P(\mu_1, \mu_2, a) =$$

$$P_0(\mu_1)h\left(\delta_1 \equiv \frac{\hbar}{\sqrt{2m\mu_1}a}, \eta \equiv \frac{\mu_2}{\mu_1}\right)$$

N. Navon et al., Science 328, 729 (2010)

Two cornerstones of quantum condensation:

BCS

BEC

Cooper pairing of weakly attractive fermions

Bose condensation of weakly repulsive bosons

Two cornerstones of quantum condensation:

BCS

BEC

$$(k_{\rm F}a)^{-1}$$

Two cornerstones of quantum condensation:

BCS

Unitary Fermi gas
$$(k_{\rm F}a)^{-1} = 0, \ \sigma = \frac{4\pi}{p^2}$$

$$(k_{\rm F}a)^{-1}$$

$$\sigma = 4\pi a^2$$

3D BCS-BEC crossover

(results from Functional Renormalization Group)

Microscopic Model

Many-body Hamiltonian

$$\hat{H} = \int d^3x \left(\sum_{\sigma=1,2} \hat{\psi}_{\sigma}^{\dagger} (-\nabla^2) \hat{\psi}_{\sigma} + \lambda_{\psi,\Lambda} \hat{\psi}_{1}^{\dagger} \hat{\psi}_{2}^{\dagger} \hat{\psi}_{2} \hat{\psi}_{1} \right)$$

Microscopic Model

Many-body Hamiltonian

$$\hat{H} = \int d^3x \left(\sum_{\sigma=1,2} \hat{\psi}_{\sigma}^{\dagger} (-\nabla^2) \hat{\psi}_{\sigma} + \lambda_{\psi,\Lambda} \hat{\psi}_{1}^{\dagger} \hat{\psi}_{2}^{\dagger} \hat{\psi}_{2} \hat{\psi}_{1} \right)$$

Microscopic action

$$S[\varphi,\psi] = \int_X \left(\sum_{\sigma=1,2} \psi_\sigma^* (\partial_\tau - \nabla^2 - \mu) \psi_\sigma + m_{\varphi,\Lambda}^2 \varphi^* \varphi \right)$$

$$-h_{\varphi}(\varphi^*\psi_1\psi_2-\varphi\psi_1^*\psi_2^*)$$

Macroscopic physics

How to compute the partition function?

$$Z(\mu, T) = \int D\varphi D\psi e^{-S[\varphi, \psi]}$$
 Integration

Macroscopic physics

How to compute the partition function?

$$Z_k(\mu, T) = \int D\varphi D\psi e^{-S[\varphi, \psi] + \Delta S_k}$$

scale dependent partition function

Macroscopic physics

How to compute the partition function?

$$Z_k(\mu, T) = \int D\varphi D\psi e^{-S[\varphi, \psi] + \Delta S_k}$$

scale dependent partition function

$$\partial_k Z_k(\mu, T) = \dots$$
 Solve flow equation

Wetterich equation

$$\Gamma[\Phi] = J \cdot \Phi - \log Z[J]$$
 effective action

Wetterich equation

$$\Gamma[\Phi] = J \cdot \Phi - \log Z[J]$$
 effective action

$$\partial_k \Gamma_k = \frac{1}{2} STr \left(\frac{1}{\Gamma_k^{(2)} + R_k} \partial_k R_k \right)$$

$$\Gamma_{k=\Lambda} = S$$
 fluctuations $\Gamma_{k=0} = \Gamma$

Microphysics Macrophysics

Contact in the BCS-BEC Crossover

Ideal Fermi gas: Fermi-Dirac distribution

Ideal Fermi gas: Fermi-Dirac distribution

Ideal Fermi gas: Fermi-Dirac distribution

$$n_{\vec{p}\sigma} \simeq \frac{C}{p^4}$$

Tan contact C

Several exact relations, e.g.:

$$\frac{1}{V}\frac{\mathrm{d}E}{\mathrm{d}(-1/a)} = \frac{C}{4\pi M}$$

$$E = \frac{C}{4\pi Ma} + \sum_{\sigma=1,2} \int \frac{d^3p}{(2\pi)^3} \frac{p^2}{2M} \left(n_{\vec{p}\sigma} - \frac{C}{p^4} \right)$$

Contact from the FRG

$$n_{\vec{p}\sigma} = -\int_{p_0} G_{\psi\sigma}(p_0, \vec{p})$$

full macroscopic propagator

Contact from the FRG

$$n_{\vec{p}\sigma} = -\int_{p_0} G_{\psi\sigma}(p_0, \vec{p})$$

full macroscopic propagator

Factorization of the RG flow for large p:

$$\partial_k G_{\psi,k}^{-1}(P) \simeq \frac{4}{-\mathrm{i}p_0 + p^2 - \mu} \partial_k C_k$$

Factorization of the RG flow for large p:

$$\partial_k G_{\psi,k}^{-1}(P) \simeq \frac{4}{-\mathrm{i}p_0 + p^2 - \mu} \partial_k C_k$$

Factorization of the RG flow for large p:

$$\partial_k G_{\psi,k}^{-1}(P) \simeq \frac{4}{-\mathrm{i}p_0 + p^2 - \mu} \partial_k C_k$$

Flowing contact

$$\partial_k C_k = \dots$$

Universal regime is enhanced for the Unitary Fermi gas

$$\Sigma_{\psi}(P) \simeq rac{4C}{-\mathrm{i}p_0 + p^2 - \mu} - \delta\mu$$

Universal regime is enhanced for the Unitary Fermi gas

$$\Sigma_{\psi}(P) \simeq rac{4C}{-\mathrm{i}p_0 + p^2 - \mu} - \delta\mu$$

Temperature dependent contact of the Unitary Fermi gas

Contact at T=0 in the BCS-BEC crossover

Momentum distribution of the Unitary Fermi Gas at the critical temperature

Increase of density

Contribution from high energetic particles to the density

$$n=2\int \frac{\mathrm{d}^3 p}{(2\pi)^3} n_{\vec{p}\sigma}$$

Substantial effect on $\frac{I_{\rm c}}{T_{\rm E}} \propto \frac{I_{\rm c}}{n^{2/3}}$

$$\frac{T_{\mathrm{c}}}{T_{\mathrm{F}}} \propto \frac{T_{\mathrm{c}}}{n^{2/3}}$$

Why two dimensions?

Why two dimensions?

- Enhanced effects of quantum fluctuations
 - → test and improve elaborate methods

Why two dimensions?

- Enhanced effects of quantum fluctuations
 - → test and improve elaborate methods
- Understand pairing in two dimensions
 - → high temperature superconductors

Why two dimensions?

- Enhanced effects of quantum fluctuations
 - → test and improve elaborate methods
- Understand pairing in two dimensions
 - → high temperature superconductors

How?

Why two dimensions?

- Enhanced effects of quantum fluctuations
 - → test and improve elaborate methods
- Understand pairing in two dimensions
 - → high temperature superconductors

How?

Highly anisotropic traps!

What is different?

Scattering physics in two dimensions

$$f_{
m 2d}(q) \sim rac{1}{\log(1/q^2 a_{
m 2d}^2) + {
m i}\pi + \dots} \ f_{
m 3d}(q) \sim rac{1}{-rac{1}{a} + rac{1}{2} r_{
m e} q^2 - {
m i} q + \dots}$$

Scattering amplitude

What is different?

Scattering physics in two dimensions

$$f_{
m 2d}(q) \sim rac{1}{\log(1/q^2 a_{
m 2d}^2) + {
m i}\pi + \dots}$$
 Scattering amplitude $f_{
m 3d}(q) \sim rac{1}{-rac{1}{a} + rac{1}{2} r_{
m e} q^2 - {
m i} q + \dots}$

Crossover parameter $\log(k_{\rm F}a_{\rm 2d})$

What is different?

Scattering physics in two dimensions

$$f_{
m 2d}(q) \sim rac{1}{\log(1/q^2 a_{
m 2d}^2) + {
m i}\pi + \dots}$$
 and $f_{
m 3d}(q) \sim rac{1}{-rac{1}{a} + rac{1}{2}r_{
m e}q^2 - {
m i}q + \dots}$

Scattering amplitude

Crossover parameter $log(k_F a_{2d})$

No scale invariance, but strong correlations for

$$k_{
m F} \sim rac{1}{ extstyle{a}_{
m 2d}}$$

Equation of state at T=0

$$(\mu - \varepsilon_{\mathrm{B}}/2)/\varepsilon_{\mathrm{F}} = 0.874$$
 for $\log(k_{\mathrm{F}}a_{\mathrm{2d}}) = 0$

Equation of state at T=0

$$(\mu - \varepsilon_{\mathrm{B}}/2)/\varepsilon_{\mathrm{F}} = 0.874$$
 for $\log(k_{\mathrm{F}}a_{\mathrm{2d}}) = 0$

Superfluid phase transition

$$T_{
m c}/T_{
m F}=0.172$$

Superfluid phase transition

$$T_{\rm c}/T_{\rm F} = 0.172$$

$$T_{\rm c}/T_{\rm F} = 0.172$$
 for $\log(k_{\rm F}a_{\rm 2d}) = 0$