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Fluids: Gases, Liquids, Plasmas, ...

Hydrodynamics: Long-wavelength, low-frequency
dynamics of conserved or spontaneously broken sym-
metry variables.
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Simple non-relativistic fluid

Simple fluid: Conservation laws for mass, energy, momentum
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Constitutive relations: Energy momentum tensor
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Regime of applicability
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Consider mvL ~ h: Hydrodynamics requires n/(hn) < 1



Shear viscosity in kinetic theory

Kinetic theory: conserved quantities carried by quasi-particles
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Holographic duals: Transport properties

Thermal (conformal) field theory = AdSs5 black hole
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Strong coupling limit
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Strong coupling limit universal? Provides lower bound for all theories?

Answer appears to be no; e.g. theories with higher derivative gravity duals.



Effective theories for fluids (Unitary Fermi Gas, T' > TF)
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Effective theories (Strong coupling)
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Kinetics vs No-Kinetics
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|. Scale invariant fluid dynamics

Many body system: Effective cross section oy, ~ n=2/3 (or o4y ~ A2)

Systems remains hydrodynamic despite expansion



Scale and conformal symmetry

Gallilean boosts & = 7 + ot ' =t
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|deal fluid dynamics
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First order viscous hydrodynamics
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Second order conformal hydrodynamics

Relaxation of shear stress is a second order hydro term. Complete list
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Why second order fluid dynamics?

Scaling (“Hubble”) expansion

p(zit) = po(bi(t)x;),  vi(wj,t) = i(t)zs,  cilt) = b(t)/bi(2)

Compare ideal and dissipative stresses

WL = (i — 5 32, o)
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|deal stresses propagate with speed ~ cg, dissipative stresses propagate
with infinite speed. Hydro always breaks down in the dilute corona.

Solved by relaxation time 7, ~ 2.



Il. Fluctuations

If hydrodynamics is an effective (field?) theory

then where are the loop corrections?



Thermal fluctuations

Hydrodynamic variables fluctuate

(dv;(x,t)0v; (2, t)) = —d;;0(x — )
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Hydro Loops: “Breakdown” of second order hydro

Response function G7'*7 = (6(¢)[I17Y, I1*Y]), & 1., = pv,o,
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Hydro Loops: “Breakdown” of second order hydro

mer () (5 w5 (0)

Small shear viscosity enhances fluctuation corrections.

Small 77 leads to large d7: There must be a bound on 7/n.

Relaxation time diverges: 2nd order hydro without fluctuations

Inconsistent.
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see also Kovtun, Moore, Romatschke (2011)



lll. Linear response and kinetic theory

Consider background metric g;;(t,x) = d;; + h;;(t,x). Linear response
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Kinetic theory: Boltzmann equation
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Kinetic theory

linearize f = fo +df, solve for § f, — 0IL;;, — GRr, — N(w)
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Second order hydrodynamics from kinetic theory

Boltzmann equation (BGK approximation)
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Shear & bulk viscosity: Sum rules

Randeria & Taylor proved the sum rules (corrected by Enss & Zwerger)

H /dw (w) — ¢ & ¢
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where C is Tan's contact, n; ~ C/k*.

Model spectral function: Kinetic T/Tp =05,1,2

theory for w < T, OPE for w > T.




Lattice data: n/s
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Lattice data: Spectral functions
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V. Experiments: Flow and Collective Modes

Hydrodynamic

expansion converts

coordinate space
anisotropy

to momentum space
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Elliptic flow: High T limit

(mT)S/Q
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TS —
I
: ==

Aspect Ratio

n = no(mT)3/2

T =n/P

Cao et al., Science (2010)
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Elliptic flow: Freezeout?

switch from hydro to (weakly collisional) kinetics

at scale factor bﬁ" =1, 5,10, 20
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Elliptic flow: Shear vs bulk viscosity

Dissipative hydro with both n,
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Elliptic flow: Shear vs bulk viscosity

Dissipative hydro with both n,
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Dusling, Schaefer (2010)



Viscosity to entropy density ratio

consider both collective modes (low T)
and elliptic flow (high T)
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V. Outlook: Temperature/density dependence

QGP: n/s typically assumed to be constant. Probably o.k. (in QGP
phase, at ~ 30% level), but corrections difficult to study.

CAG: n/n has significant dependence on 73/2n 1. Difficult to unfold.
Local s/n known to high accuracy (~ 2%).

Initial state

QGP: Biggest source of uncertainty. Opportunity: Initial state
fluctuations generate odd harmonics.

CAG: Well characterized. Some ability to control initial state, but this
opportiunity has not been exploited.



Final state

QGP: Kinetic afterburners standard. Flow does not saturate, some
puzzling data about energy dependence (vy growth due to mean pr
increase?) and high pr (non-hydro) flow.

CAG: No need for freezeout, flow saturates. But: need kinetics for
corona (currently: relaxation time approach interpolates to kinetic
limit).

Higher harmonics

QGP: Important constraint on viscosity, but need initial state models.

CAG: Some data on higher multipole collective modes. Need data from
single experiment.



Bulk viscosity

QGP: Hard to measure from flow. Important effects on pr spectra and
hadro-chemistry?

CAG: Zero at unitarity. Can be measured from either flow or collective
mode damping. Leading behavior away from unitarity not known.

Fluctuations

QGP: Dominated by initial state fluctuations? Possible effects near
critical points. Some attempts at stochastic hydro.

CAG: Dominated by thermal fluctuations. Possible effects near 1. and
in two dimensions.



Outlook: New ideas (?)

QGP: Phenomenology: What is the best observable to constrain 7/s?
Integrated vy in ultra-central collisions?

Theory: Anomalous hydrodynamics, new ideas about thermalization
(hydro before isotropization and thermalization).

CAG: Experiment: Hydrodynamic engineering; can we design flow
profiles? Muiple modes, artificial gauge fields (?)

Theory: How to do hydro/kinetic interface: 2nd order hydro, lattice
Boltzmann, BGK kinetics? Holographic Schr(d): Still no dual of
unitary fermions, d = 2 easier?



