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Introduction

Already discussed at this workshop:

◮ Quark-gluon plasma at RHIC or LHC: elliptic flow

hydrodynamic behaviour with shear viscosity η close to the lower bound

ηmin =
~s

4πkB
(s = entropy density)

◮ Fermi gas in the unitary limit: expansion, collective modes

hydrodynamic behaviour, η again of the order of ηmin

But what does “hydrodynamic” mean?



Hydrodynamic behaviour

◮ Starting point: distribution function f (~r , ~p, t)

◮ Example: uniform ideal Fermi gas in equilibrium:

feq(~p;µ,T ) =
1

e(p
2/2m−µ)/T + 1

◮ A system behaves hydrodynamically if it stays locally in equilibrium:

f (~r , ~p, t) ≈ feq(~p −m~v (~r , t);µ(~r , t),T (~r , t))

→ it is enough to know ~v(~r , t), µ(~r , t) and T (~r , t)
→ which depend only on ~r and t but not on ~p.

◮ Local equilibrium is restored by collisions on a time scale τ

(relaxation time ∼ mean time between collisions)

→ The same system may behave hydrodynamically or not
→ depending on whether one is interested in slow or fast processes.



Collective modes in trapped Fermi gases

◮ Experiments done at Duke, Innsbruck, ENS, . . .

◮ Typical situation: strongly anisotropic trap Vtrap(~r ) =
m

2

∑

i=x,y,z

ω2
i r

2
i

with ωz ≪ ωx , ωy → strongly elongated cloud

◮ Collective modes: small oscillations of the cloud size or shape

◮ Axial breathing mode: slow → hydrodynamic

◮ Radial modes (in the xy plane): much faster → not always hydrodynamic!

radial
breathing
mode

radial
quadrupole

mode

scissors
mode



Example: Quadrupole mode

◮ Hydrodynamic regime (ω⊥τ ≪ 1):
ωQ =

√
2ω⊥ independent of the interaction (no compression)

p spacer space

◮ Collisionless regime (ω⊥τ ≫ 1):
Purely ballistic motion in the trap potential → ωQ = 2ω⊥

Shape of momentum distribution oscillates, too.

r space p space

Mean field potential U leads to (small) corrections to ωQ

◮ Intermediate cases (ω⊥τ ∼ 1): Strong damping!



Dynamical regimes

◮ This talk: transition from collisional hydrodynamics to collisionless regime

BCSBEC

less
collision−

Figure: Wright et al., PRL 99, 150403 (2007) dilute

dense

(data points: temperatures where scissors-mode damping is maximum)



Theoretical framework

◮ (Viscous) hydrodynamics insufficient → kinetic theory

◮ Boltzmann equation:

ḟ +
~p

m
· ~∇r f − ~∇rV · ~∇pf = −I [f ]

V = Vtrap + U = potential (trap + mean field)

◮ Collision term:

I [f ] =

∫

d3p1

(2π)3

∫

dΩ
dσ

dΩ
|~v − ~v1|[ff1(1− f ′)(1− f ′1 )− f ′f ′1 (1− f )(1− f1)]

dσ

dΩ
= cross section

(1− f ′) etc. = Pauli blocking factors (suppress collisions at low T )



In-medium cross section

◮ Scattering cross section in free space: σ0 =
4πa2

1 + (qa)2

◮ Scattering amplitude in the gas is modified by Pauli blocking of
intermediate states

◮ Calculate in-medium T matrix in ladder approximation

1

2

p’

= ++ + ...
p

1

p
2

p’

T

◮ At low temperature (T → Tc),
the in-medium cross section σ

gets strongly enhanced
(precursor of the pole in the T
matrix at T = Tc)
[Bruun and Smith, PRA 76,

045602 (2007); in nuclear physics:

Alm et al., PRC 50, 31 (1994)]
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Mean field

◮ Calculate self-energy Σ(ω, k) with
in-medium T matrix

◮ Quasiparticle (QP) approximation:

U = Σ(0, kµ)

where kµ =
√

2mmax(µ, 0)
[Perali et al., PRB 66, 024510 (2002)]

◮ Local-density approximation (LDA):
replace µ → µ− V

◮ U strongly affects the density profiles
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◮ Out of equilibrium: assume δU(~r , t) =
(∂U
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Approximate solution of the Boltzmann equation:

Method of moments

◮ Linearize Boltzmann equation for small deviations from equilibrium

◮ Write distribution function as f (~r , ~p, t) = feq(~r , ~p) +
dfeq

dµ
Φ(~r , ~p, t)

◮ Ansatz for Φ: Polynomial in ~r and ~p with time-dependent coefficients

◮ Determine time-dependence by taking moments of the Boltzmann equation

◮ Usually [Bruun et al., Riedl. et al., Chiacchiera et al., . . . ]:

Include only polynomials of second order in ~r and ~p

(equivalent to “generalised scaling” [Pedri et al.])



Example: Scissors mode (1/kFa = −0.45)

Experiment Wright et al., PRL 99, 150403 (2007)
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—– Mean field improves agreement with the data.

—– In-medium σ is too strong and compensates Pauli blocking effect
[Bruun and Smith, PRA 75, 04612 (2007); Riedl et al., PRA 78, 053609 (2008)]



What’s wrong?

◮ With the in-medium σ, the obtained relaxation time τ is too short.

◮ Is this a defect of the underlying theory or just of the approximate solution
of the Boltzmann equation (method of moments)?

◮ Example: Within the ansatz for the quadrupole mode

Φ = c1(x
2 − y2) + c2(p

2
x − p2y) + c3(xpx − ypy )

the Fermi sphere deformation is the same everywhere in the trap,
but it should be smallest near the center where collisions are most frequent.

◮ Possible solutions:

(a) Numerical solution of the Boltzmann equation (test particles)

(b) Include higher-order moments into the method of moments
(e.g. 4th order, including a term ∝ r2(p2

x − p2
y ))

(c) Relaxation-time approximation with τ = τ (~r) [Wu and Zhang (2012)]



Numerical solution of the Boltzmann equation

◮ Use the method of test particles
(often employed in the simulation of heavy-ion collisions)

◮ Simplifications:
◮ Spherical trap: V = 1

2
mω2

0r
2

◮ Neglect medium effects: U = 0, σ = σ0

Tests of the numerics

Stability of the equilibrium distribution and total collision rate:
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Numerical simulation of the quadrupole mode

◮ Excitation: V1(~r , t) = c(x2 − y2)δ(t) (c small → linear response)

→ at t = 0, all test particles get a kick ~pi → ~pi − c ~∇(x2 − y2)

◮ Results for Q(t) = 〈x2 − y2〉(t) and its Fourier transform Q(ω)

(N = 10000 atoms, 1/kFa = −0.5)

-0.1
0

-0.1
0

-0.1
0

-0.1
0

 0  5  10  15  20  25  30

Q
(t

) 
/ <

r2 >
eq

ω0 t

T/TF=0.25

T/TF=0.55

T/TF=0.89

T/TF=1.2

≈

≈

≈

0
0.25

0
0.25

0
0.25

0
0.25
0.5

0.75

 0  0.5  1  1.5  2  2.5  3

-I
m

 Q
(ω

) 
× 

ω
0/

<
r2 >

eq

ω / ω0

T/TF=0.25

T/TF=0.55

T/TF=0.89

T/TF=1.2

≈

≈

≈



Moments method vs. numerical solution
◮ Compare response functions obtained from:

method of moments (2nd order),
numerical simulation (test particles),
extended method of moments (up to 4th-order moments):
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◮ 2nd-order moments result “more hydrodynamic” than numerical solution

◮ Inclusion of 4th-order moments → considerable improvement



Results of 2nd- and 4th-order moments vs. experiment

◮ Extended moments method can also be used in the realistic case
(N = 600000, elongated trap, in-medium σ)

◮ Radial quadrupole mode [data: Riedl et al., PRA 78, 053609 (2008)]

◮ Compare 2nd-order and 4th-order results with data
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◮ 4th-order results with in-medium cross section in much better agreement
with data than 2nd-order ones



Conclusions

◮ Collective modes in ultracold trapped Fermi gases can show different
behaviour from hydrodynamic to collisionless

◮ Description in the framework of the Boltzmann equation, approximate
solutions obtained with the method of moments

◮ Comparison with numerical solution indicates that higher-order moments
are necessary [similar to using τ = τ(~r )]

◮ Frequency and damping of quadrupole mode measured at Innsbruck can be
more or less explained

Outlook
◮ Numerical simulation in the realistic case

◮ Asymmetric systems (N↑ 6= N↓)

◮ Superfluid phase


