

Baryon-Rich State of QCD Matter ~ Nuclear Matter and Quark Matter~

Kenji Fukushima (Department of Physics, Keio University)

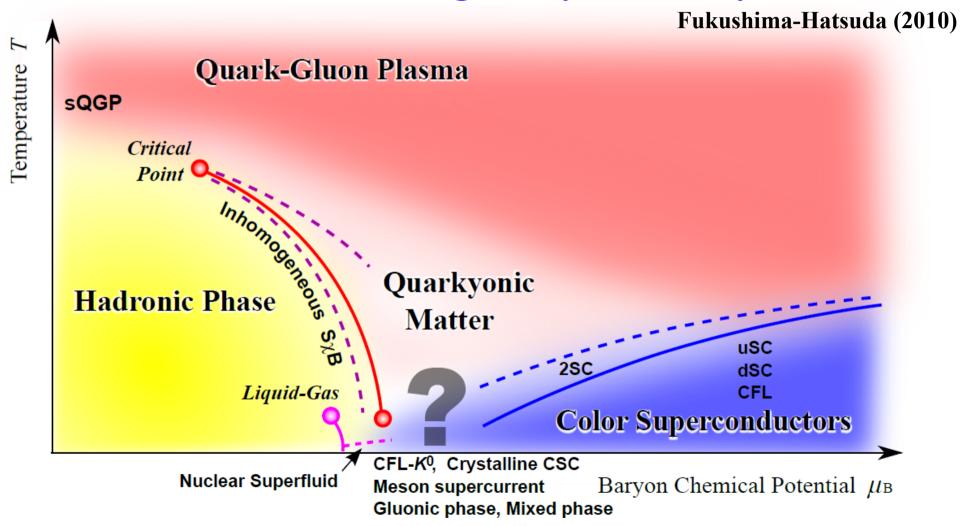
A review is in preparation with C. Sasaki

Main Goals

- Intuitive understanding of the possible structure of the QCD phase diagram, extracting common features of the effective model approaches in the market.
- General mechanisms that favor and hinder a 1st-order phase transition and cause inhomogeneous states.
- How to think about confinement / deconfinement ? First step: Construction of the Polyakov-loop potential in a first-principle-like calculation.

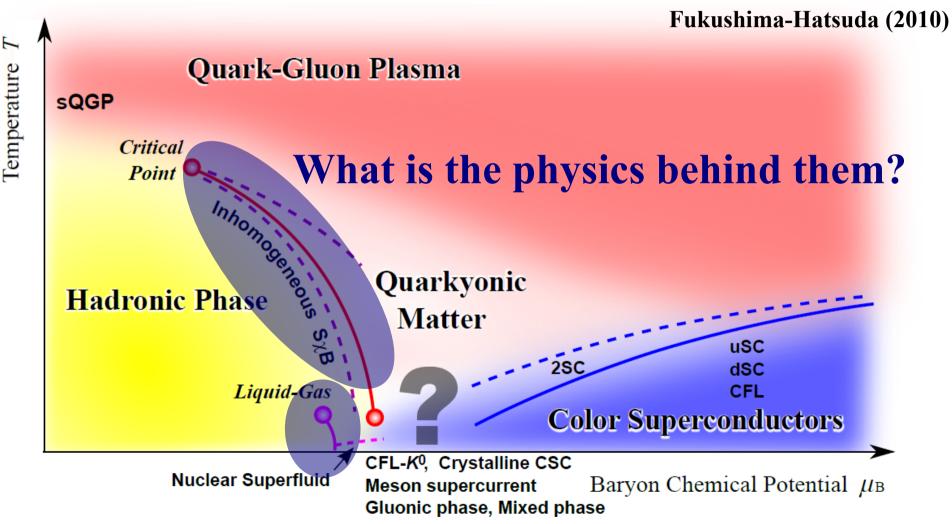
Motivation toward the Higher Density

1st-order? CP? Inhomogeneity? Quarkyonic?



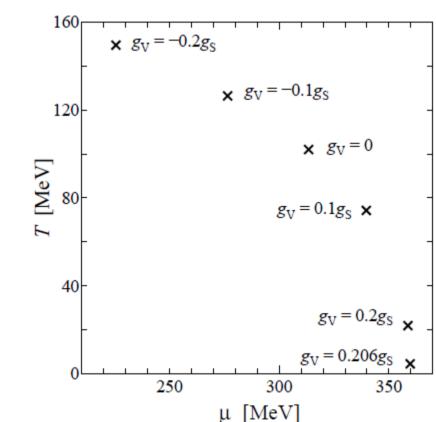
1st-order? Inhomogeneity?

Intuitive explanation?



QCD Critical Point or Not?

Weak vector interaction washes it out \rightarrow Unlikely!



$$L_{\nu} = -g_{\nu}(\bar{\psi} \gamma_{\mu} \psi)(\bar{\psi} \gamma^{\mu} \psi)$$

Why such important?

- * Consistent with chiral symmetry
- * Non-zero mean-field ρ at finite μ (FRG? D-S?)
- * ρ = correct order parameter than σ
- * Making the EoS harder (demanded to sustain the two- M_{\odot} neutron star)

How to understand this intuitively? Two different explanations

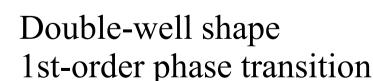
Mechanism of the 1st-order Transition

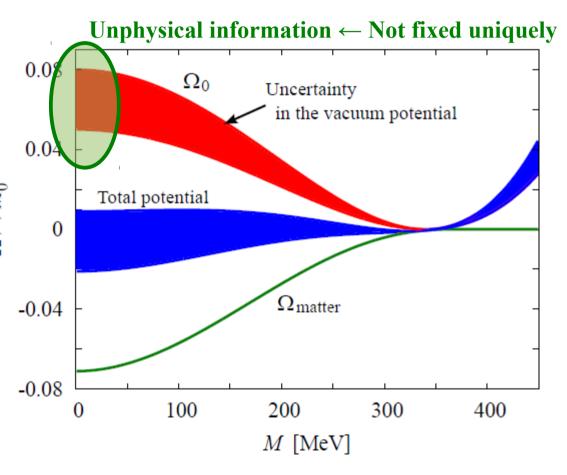
Free energy vs the dynamical quark mass (T=0)

$$\Omega[M]/V\!=\!-\int_0^\mu d\mu' \rho(\mu')$$

Matter part favors M = 0 (ρ is then the largest)

Vacuum part favors $M = M_0$



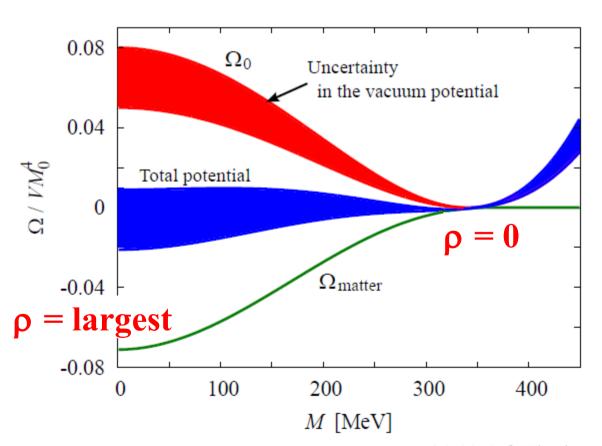


Simple and robust mechanism

Vector Interaction

Vector interaction in the mean-field approx.

$$L_{\nu} = -g_{\nu}(\bar{\psi} \gamma_{\mu} \psi)(\bar{\psi} \gamma^{\mu} \psi) \rightarrow \Delta \Omega = g_{\nu} \rho^{2}$$



Pushed up at M=0

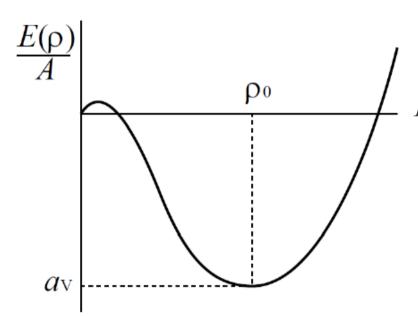
With some $g_v > 0$ the double-well shape gone

No 1st-order transition and no critical point

Another Picture

Self-bound fermionic system \rightarrow 1st-order

Schematic picture of the (symmetric) nuclear saturation curve

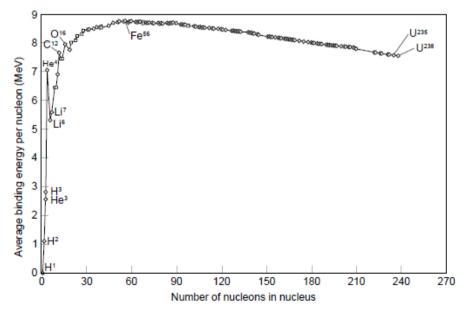


$$\rho_0 = 0.17 \,\text{fm}^{-3}$$

 $a_v = 16.3 \,\text{MeV}$

Weizsäcker-Bethe mass formula

$$B = a_v A - a_s A^{2/3} - a_c \frac{Z^2}{A^{1/3}} - a_{\text{sym}} \frac{(N-Z)^2}{A} + \delta_A$$



Simple Mean-field Model

ilika yis, dilka yis, dilka yis, dilka yis, dilka dilka yis, dilka yis, dilka yis, dilka yis, dilka yis, dilka

σ-ω model (Walecka model)

This naturally incorporates the vector interaction

$$L = \overline{\psi} [i \gamma_{\mu} \partial^{\mu} + \underline{(\mu_{B} - g_{\omega} \omega^{0})} \gamma_{0} - \underline{(M_{N} - g_{\sigma} \sigma)}] \psi - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} + \frac{1}{2} m_{\omega}^{2} (\omega^{0})^{2}$$

$$\mu_{B}^{*} \qquad M_{N}^{*}$$

$$\Omega/V = -4 \int \frac{d^3 p}{(2\pi)^3} \left[T \ln \left[1 + e^{-(\omega - \mu_B^*)/T} \right] + T \ln \left[1 + e^{-(\omega + \mu_B^*)/T} \right] \right]$$

$$\frac{\partial \Omega}{\partial M_N^*} = \frac{\partial \Omega}{\partial \mu_B^*} = 0$$

$$+\frac{m_{\sigma}^{2}(M_{N}^{*}-M_{N})^{2}}{2g_{\sigma}^{2}}-\frac{m_{\omega}^{2}(\mu_{B}^{*}-\mu_{B})^{2}}{2g_{\omega}^{2}}$$

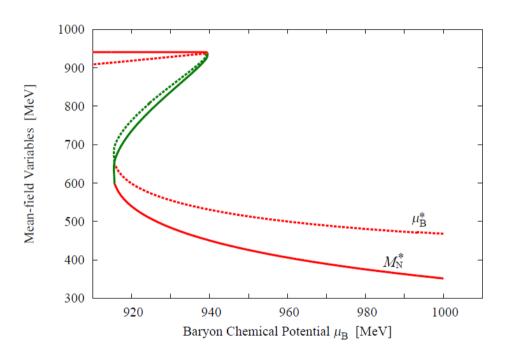
$$\frac{\varepsilon}{\rho}\Big|_{\rho=\rho_0} - M_N = -16.3 \text{ MeV} , \frac{d(\varepsilon/\rho)}{d\rho}\Big|_{\rho=\rho_0} = 0$$

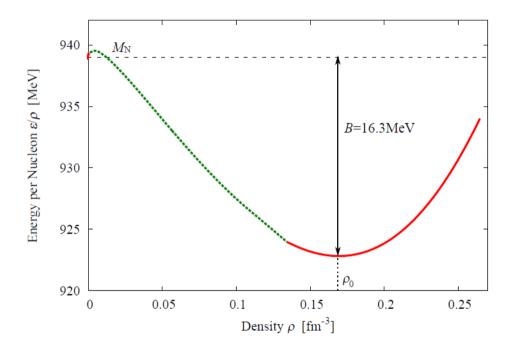
Compressibility needs the potential terms, etc...

$$M_N = 939 \text{ MeV}, \ m_{\sigma} = 550 \text{ MeV}, \ m_{\omega} = 783 \text{ MeV}, \ g_s = 10.3, \ g_{\omega} = 12.7$$

Mean-field Solution

Mean-field variables





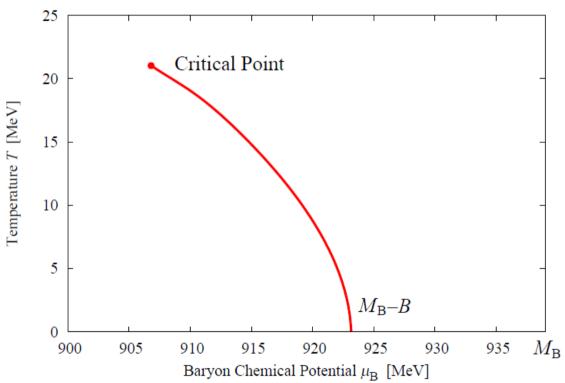
At the saturation point

$$\frac{d(\epsilon/\rho)}{d\rho} = \frac{\mu_B}{\rho} - \frac{\epsilon}{\rho^2} = \frac{p}{\rho^2} = 0$$

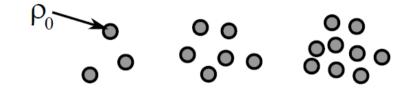
1st-order phase transition Liquid-gas transition Chiral phase transition

Critical Point of Nuclear Matter

Its existence is undoubtable



Pion (thermal) loops are not important yet at such low temperature.



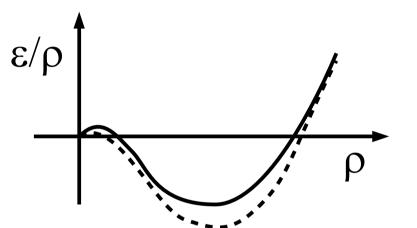
How to realize the density $\rho < \rho_0$

when $\rho = \rho_0$ is the most stable?

This should be realized as a mixed phase (or a non-trivial configuration depending on the surface energy).

Quark Matter

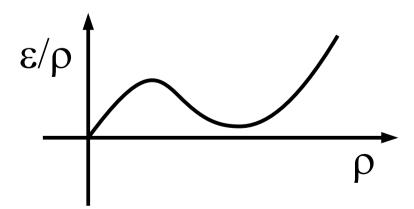
Is it a self-bound system? \rightarrow Quark droplet?



1st-order phase transition → **QCD critical point**

Any more stable state would exhibit the 1st-order one too.

Even when the quark droplet is only meta-stable

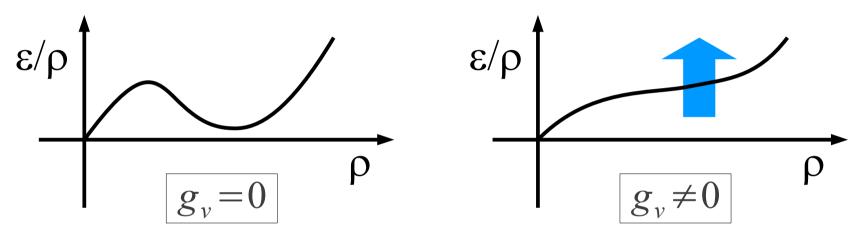


$$\frac{d(\epsilon/\rho)}{d\rho} = \frac{\mu_B}{\rho} - \frac{\epsilon}{\rho^2} = \frac{p}{\rho^2} = 0$$

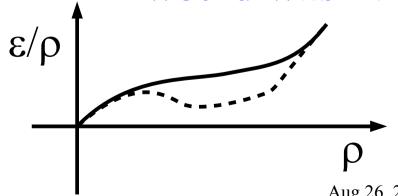
1st-order phase transition → **QCD critical point**

Vector Interaction Again

$$L_{\nu} = -g_{\nu}(\bar{\psi} \gamma_{\mu} \psi)(\bar{\psi} \gamma^{\mu} \psi) \rightarrow \Delta \Omega = g_{\nu} \rho^{2}$$



It is obvious at a glance that the vector interaction would wash the 1st-order transition out.

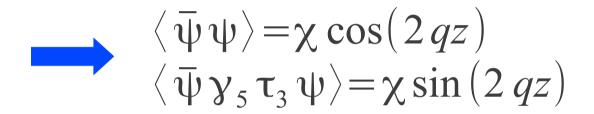


Is there any chance to find another branch of solution?

Inhomogeneity: Simplest Case

Chiral spiral in one direction Deryagin-Grigoriev-Rubakov (1992)

$$\psi(x) = e^{i\gamma_5 \tau_3 q z} \psi'(x) \text{ with } \chi = \langle \bar{\psi}' \psi' \rangle$$



Buballa-Carignano Soliton **2D**

Quasi-particle dispersion relation

$$\omega = \sqrt{p_{\perp}^2 + \left(\sqrt{p_z^2 + M^2} \pm q\right)^2}$$

The system can develop a density however large M is if $q \sim M$ is chosen!

c.f. (1+1)-dimensional System

###praiss###praiss###praiss###praiss###praiss###praiss###praiss###praiss###praiss###praiss####

Dirac Lagrangian in (1+1) dimensions

$$L = \overline{\psi} [i(\partial_4 - \mu) \gamma_4 + i \partial_z \gamma_z] \psi \qquad \psi = e^{-i\mu \gamma_5 z} \psi'$$

= $\overline{\psi}' [i \partial_4 \gamma_4 + i \partial_z \gamma_z] \psi'$

Thermodynamic potential

$$\Omega/V = -\int_{-\Lambda + \mu}^{\Lambda - \mu} \frac{dp}{2\pi} \frac{|\epsilon(p)|}{2} - \int_{-\Lambda - \mu}^{\Lambda + \mu} \frac{dp}{2\pi} \frac{|\epsilon(p)|}{2} + \cdots$$

$$= \Omega(\mu = 0)/V \left(-\frac{\mu^2}{2\pi}\right) \quad \text{Surface integral: Anomaly origin} \quad \text{No suppression by } M$$

Push down the energy as compared to the homogeneous case:

$$\Omega(\mu=0)/V + \left[-\frac{p_F \mu}{2\pi} + \frac{M^2}{2\pi} \ln \left| \frac{p_F + \mu}{M} \right| \right] \underline{\theta(\mu-M)} \longrightarrow n = \frac{p_F}{\pi} \theta(\mu-M)$$

Competing Terms

From the matter (density effect) $\omega = \sqrt{p_{\perp}^2 + (\sqrt{p_z^2 + M^2} \pm q)^2}$

$$-\int_0^\mu d\mu' \rho(\mu') - 4N_c N_f T \int \frac{d^3 p}{(2\pi)^3} \ln(1 + e^{-\omega/T}) \longrightarrow q \sim M \to \infty$$

■ From the vacuum (chiral symmetry breaking)

$$a(M_0^2 - M^2) - bM$$
 ($b \sim \text{bare quark mass}$) \longrightarrow $M \sim M_0$

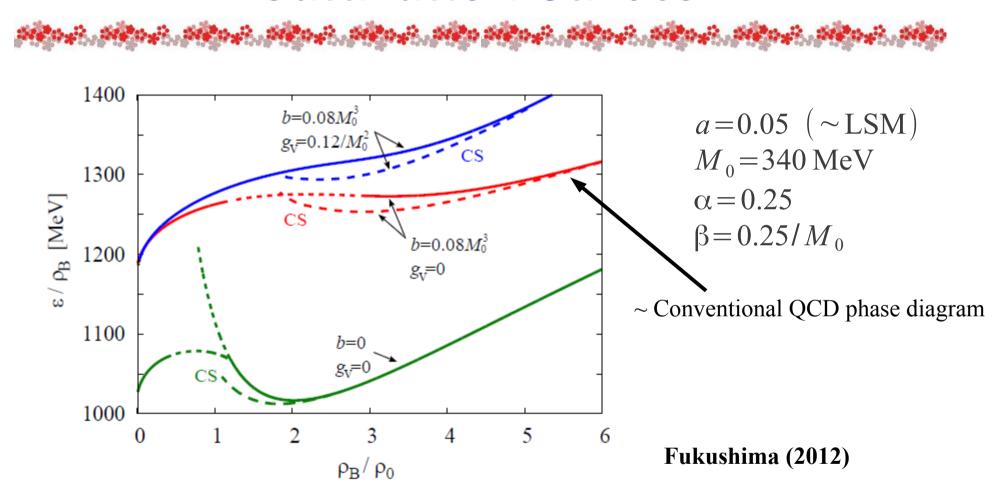
From the vacuum (kinetic term)

$$(\alpha M^2 + \beta b)q^2 \longrightarrow q \sim 0$$

■ From the interaction (vector-type)

$$g_v \rho^2 \longrightarrow M \neq 0$$

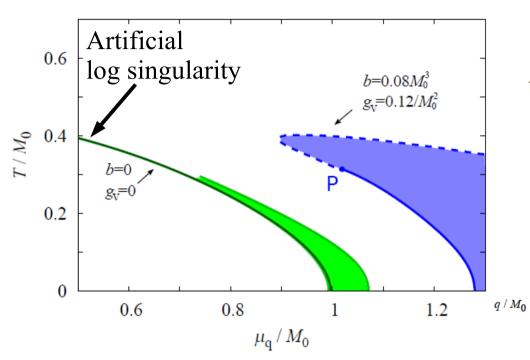
Saturation Curves

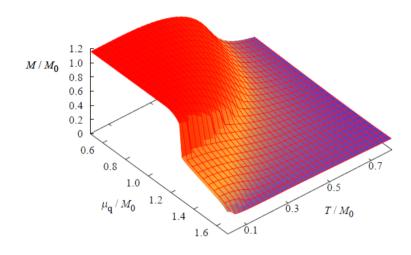


It is natural (but not necessary) that the 1st-order transition with a smaller energy occurs at smaller density.

Less affected by the vector interaction then.

Phase Diagram





 $0.6 \\ 0.4 \\ 0.2 \\ 0 \\ 0.6 \\ 0.8 \\ 1.0 \\ 0.8 \\ 1.0 \\ 0.1 \\ 0.3 \\ T/M_0$

Inhomogeneity survives even with g_v that washes the CP out.

Note that the order of the transition and P are not a robust conclusion...

$$q \sim M$$

Artificial Log Singularity

principal princi

\blacksquare Fermionic fluctuations at finite T

$$\int^{\Lambda} \frac{d^3 p}{(2\pi)^3} \omega = \frac{\Lambda^4}{16\pi^2} \left[\sqrt{1 + \xi^2} (2 + \xi^2) + \frac{\xi^4}{2} \ln \left| \frac{\sqrt{1 + \xi^2} - 1}{\sqrt{1 + \xi^2} + 1} \right| \right] \quad \xi = \frac{M}{\Lambda}$$

This log singularity is exactly canceled by finite-*T* contribution

Skokov-Friman-Nakano-Redlich-Schaefer (2010)

■ Magnetic Catalysis at finite *T*

$$\int^{\Lambda} \frac{d^3 p}{(2\pi)^3} \omega = \frac{|eB|}{2\pi} \cdot \frac{\Lambda^2}{2} \left[1 + \left(\ln \frac{2}{\xi} + \frac{1}{2} \right) \xi^2 \right]$$

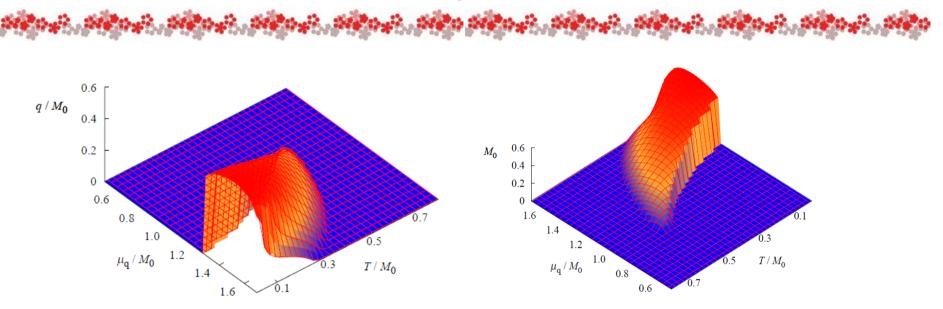
Klimenko Gusynin-Miransky-Shovkovy

Chiral symmetry is always spontaneously broken in B

This log singularity is exactly canceled by finite-T contribution because its origin is the IR singularity

Fukushima-Pawlowski (2012)

Structure of the Island



In the small density side (cliff):

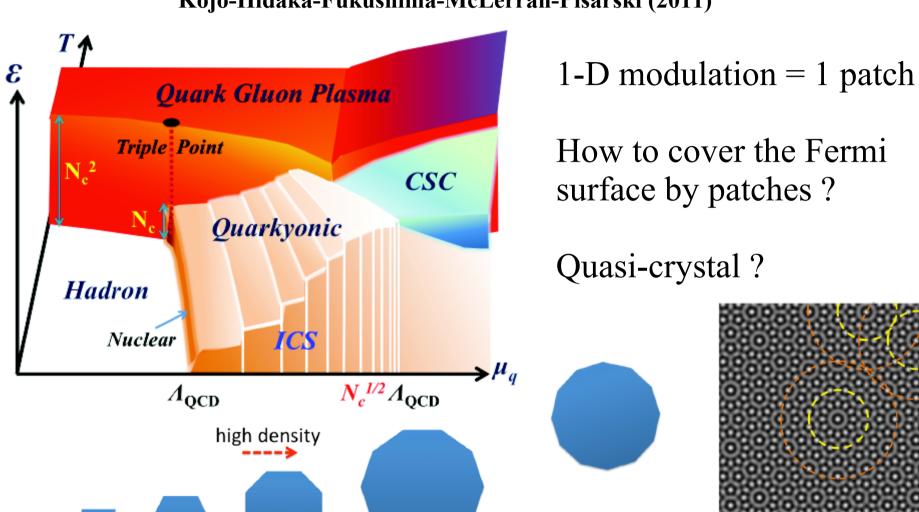
Big energy gain (or jump in the wave-number) because M is still large.

In the large density side (beach):

Small energy gain and smoothly approaches an inhomogeneous chiral-symmetric state.

Patch Problem and Successive Phase Transitions

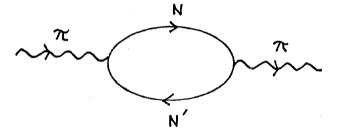
Kojo-Hidaka-Fukushima-McLerran-Pisarski (2011)



cf. p-wave Pion Condensation

pilipais pilipais

$$\Pi(\omega, k) \rightarrow D^{-1}(\omega=0, k=k_c)=0 \text{ at } \rho=\rho_c$$



Landau-Migdal (short-range) interaction

$$f + g \sigma_1 \cdot \sigma_2 + f' \tau_1 \cdot \tau_2 + g' (\sigma_1 \cdot \sigma_2) (\tau_1 \cdot \tau_2)$$

Should include Δ for quantitative calculations

OPEP

$$V = \frac{m_{\pi}^{2}}{3} \frac{g^{2}}{4\pi} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \left[\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2} \frac{e^{-m_{\pi}r}}{r} + S_{12} \left(1 + \frac{3}{m_{\pi}r} + \frac{3}{(m_{\pi}r)^{2}} \right) \frac{e^{-m_{\pi}r}}{r} \right]$$

$$\left[-\frac{g^{2}}{3} (\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}) (\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}) \right]$$

$$I \text{ area of leither.}$$

Similar analysis desirable in the RPA level in quark matter

Large g' kills the pion cond.

→ Gamow-Teller resonance
Majority thinks negative,
but some people still believe.

Confinement / Deconfinement

Polyakov loop potential

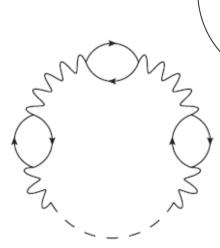
 $\Omega[\Phi]$: pure YM thermodynamics

Coupling to the Polyakov loop

$$\operatorname{tr} \ln \left(1 + L e^{-(E-\mu)/T} \right) + \operatorname{tr} \ln \left(1 + L^{\dagger} e^{-(E+\mu)/T} \right)$$

Back-reaction

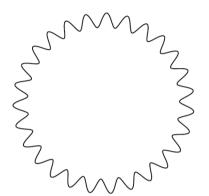
Important at finite μ or BNo systematic approach yet



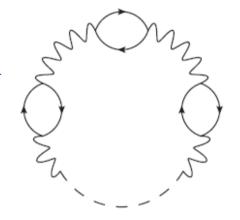
Confinement / Deconfinement

Polyakov loop potential

 $\Omega[\Phi]$: pure YM thermodynamics



Back-reaction



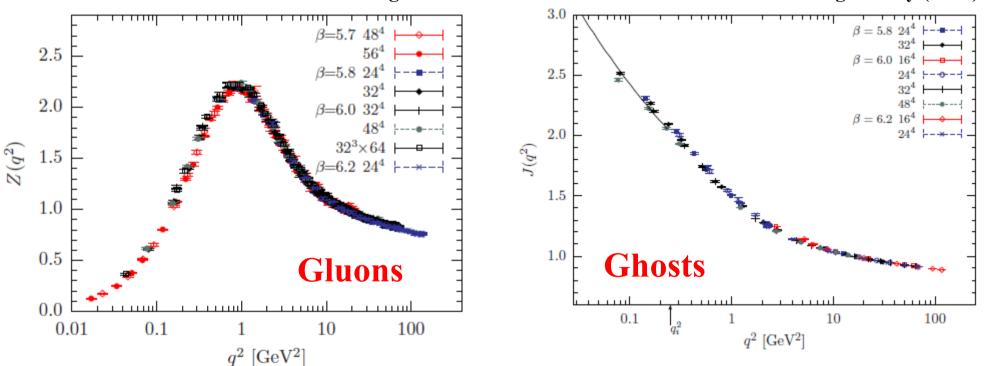
One way to deal with this is to take the large-Nc limit where the reaction drops out \rightarrow Quarkyonic Matter

Need to establish how to get the Polyakov loop potential based on a *first-principle-like* calculation and, at the same time, in a *reasonably tractable* way.

Deconfinement from Confinement

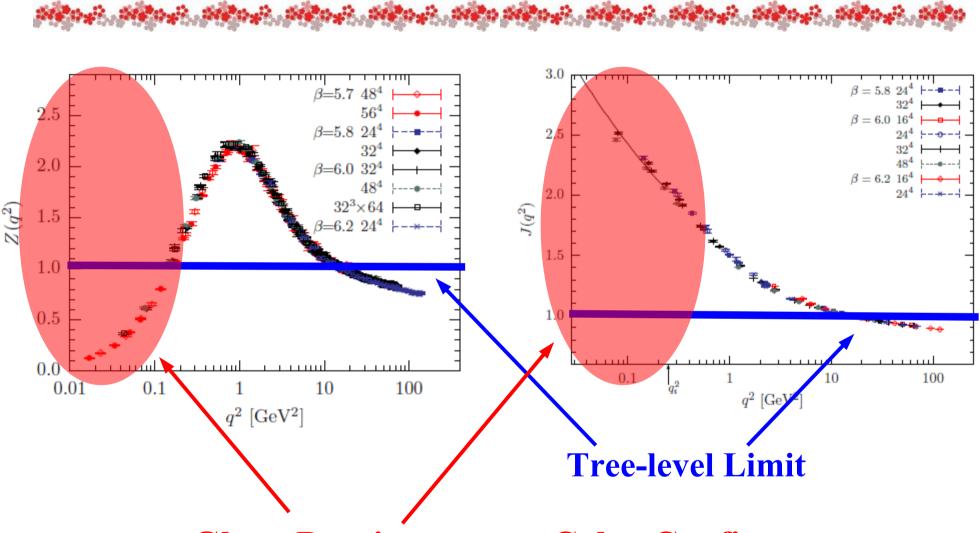
Confinement understood from the non-perturbative propagators of gluons and ghosts in the Landau gauge

Ilgenfritz-Muller-Preussker-Sternbeck-Schiller-Bogolubsky (2007)



Behavior of the "dressing functions" (propagator residue)

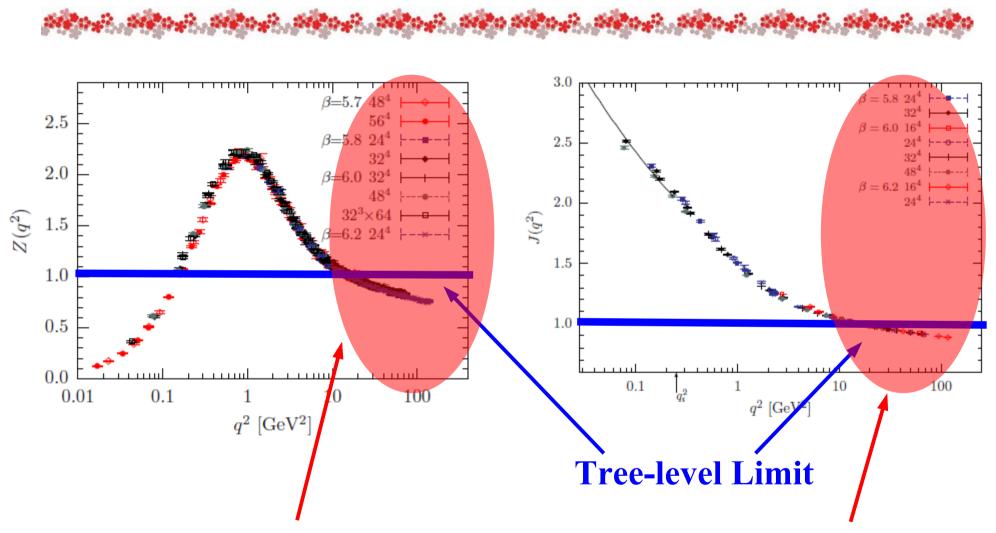
Confinement at Low T



Ghost Dominance \rightarrow **Color Confinement**

(c.f. Kugo-Ojima / Gribov-Zwanziger)

Deconfinement at High T



All Excitations with $p \sim 2\pi T \rightarrow$ Perturbative Limit Two Transverse Gluons (unphysical ones canceled)

2PI (CJT) Formalism

Effective Action

$$\Gamma = \frac{1}{2} \operatorname{tr} \ln G^{-1} - \frac{1}{2} \operatorname{tr} \ln (G^{-1} - G_0^{-1}) G + \Gamma_2[G]$$

Once the full propagator is know, the effective action (or the pressure) is calculable from the above.

$$\Gamma \simeq \frac{1}{2} \operatorname{tr} \ln G^{-1}$$

Reasonable approximation if the quasi-particle picture makes sense. (c.f. Hartree approximation)

In principle, improvable by evaluating the 2PI diagrams (Controllable approximation)

Practical Prescription

PROPERTY OF THE PROPERTY OF TH

Gribov-Stingle form

$$D_{L} = \frac{1}{p^{2}} D_{T}^{(T)} = \frac{c_{t}}{p^{2}} \cdot \frac{d_{t} p^{2} + 1}{p^{2} + r_{t}^{2}} D_{T}^{(L)} = \frac{c_{l}}{p^{2}} \cdot \frac{d_{l} p^{2} + 1}{p^{2} + r_{l}^{2}}$$

$$D_{C} = \frac{d_{g}^{-1}}{p^{2}} \cdot \frac{d_{g} p^{2} + 1}{p^{2}}$$

$$c_t = 5.5 \text{ GeV}^2$$
, $d_t = 0.152 \text{ GeV}^{-2}$, $r_t^2 = 0.847 \text{ GeV}^2$, at $T = 0.86T_c$
 $c_l = 3.7 \text{ GeV}^2$, $d_l = 0.221 \text{ GeV}^{-2}$, $r_l^2 = 0.257 \text{ GeV}^2$.

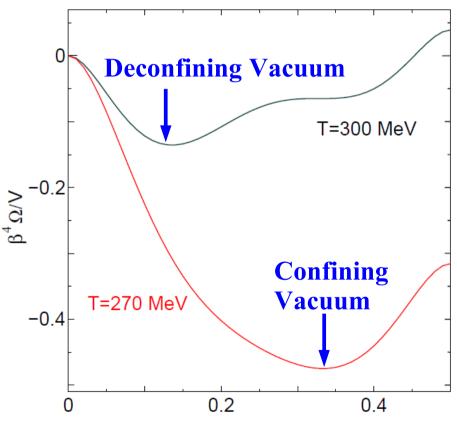
$$\operatorname{tr} \ln D_T^{(T)-1} = \operatorname{tr} \ln p^2 + \operatorname{tr} \ln (p^2 + r_t^2) - \operatorname{tr} \ln (p^2 + d_t^{-1})$$

$$= W_B(0, L_8) + W_B(r_t^{2}, L_8) - W_B(d_t^{-1}, L_8)$$

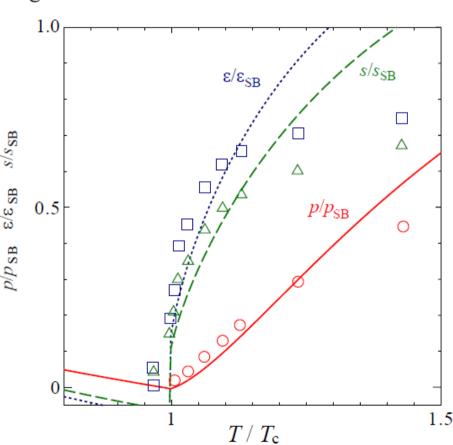
$$W_B(m^2, L_8) = -2 V \int \frac{d^3 p}{(2\pi)^3} \operatorname{tr} \ln \left(1 - L_8 e^{-\sqrt{p^2 + m^2}/T}\right)$$
 Finite!

Phase Transition from Propagators

$$\ln Z = -\frac{1}{2} \operatorname{tr} \ln D_{\text{gluon}}^{-1} + \operatorname{tr} \ln D_{\text{ghost}}^{-1} + \cdots$$



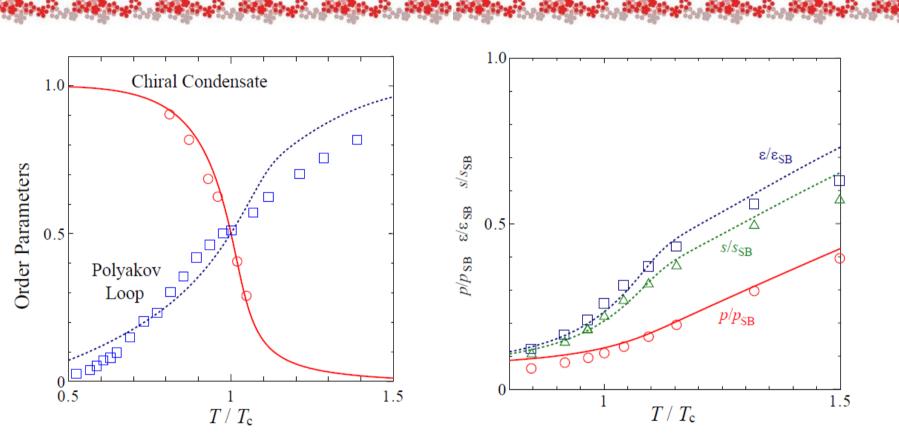
Phase of the Polyakov Loop $\sim A_4$



Confinement → **Deconfinement**

Fukushima-Kashiwa (2012)

Inclusion of Dynamical Quarks



Simultaneous Crossovers

Thermodynamics near T_c

First model computation with the first-principle-like Polyakov loop potential implemented → Promising!

Outlooks

How to introduce the back-reaction at finite μ or B?

How to understand deconfinement at high μ ? Indispensable to clarify the properties of Quarkyonic... Non-trivial question; nobody knows the answer...?

Whether deconfinement is induced by B?

Naïve insertion of the polarization leads to artifacts...

So far, deconfinement is not seen on the lattice...?

Interplay between μ and B?

Sign problem is (partially) evaded! (Fukushima-Hayata-Hidaka)
Inhomogeneous ground states even more favored...?