

Quantifying a Reduced Jet-Medium Coupling at the LHC

Barbara Betz

Many thanks to Alexandros Gezerlis, Giorgio Torrieri, and Miklos Gyulassy

Workshop at Waldemar-Petersen-Haus Hirschegg, Austria

PRC 84, 024913 (2011); PRC 86, 024903 (2012)

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Jet-Quenching in a Quark-Gluon Plasma vs. Cold Atoms

Barbara Betz

Many thanks to Alexandros Gezerlis, Giorgio Torrieri, and Miklos Gyulassy

Workshop at Waldemar-Petersen-Haus Hirschegg, Austria

PRC 84, 024913 (2011); PRC 86, 024903 (2012)

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Are Cold Atoms similar to the QGP?

08/29/12

Quark-Gluon-Plasma meets Cold Atoms - Episode III

Barbara Betz

Cold Atoms vs. QGP

- → Are cold atoms transparent to "fast" atoms?
- → How can one learn about the opacity?

Jet Quenching

Jet Quenching is a way of learning about the opacity of a system

Idea: Jet moving through dense matter, depositing its energy should eventually disappear

5

 $\Delta \phi$

The Nuclear Modification Factor at RHIC

→ Clear hadronic suppression at around $R_{AA} \sim 0.2$

Jet Tomography

"fast" atoms ↓↓↓

detector

 $R_{AA} = N_{out}/N_{in}$

→ It might be easier to study jet suppression in cold atoms

Heavy-ion collisions (HIC): Different geometry & initial condition models are used

Jet Quenching and Elliptic Flow

low viscosity high opacity

low viscosity low opacity

Open Problems in HIC

Basic questions in HIC:

- What are the initial conditions?
- Is the medium weakly-or strongly-coupled (pQCD vs. AdS/CFT)?
- How big is the jet-medium coupling?
- How does the jet-energy loss look like?
- What is the correct description of the freeze-out?

Two medium observables:

 jet quenching: opaque matter (QGP) formed

$$R_{\rm AA}(p_T) = \frac{dN_{\rm AA}/dp_T}{N_{\rm coll}dN_{\rm pp}/dp_T}$$

 elliptic flow: (nearly) perfect fluid created

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \left[1 + 2\sum_{n=1}^{\infty} v_n \cos(n\phi) \right]$$

9 03/27/12

Jet Tomography in HIC

S. Bass, Talk Quark Matter 2001

determine the R_{AA} and v_2 of of high- p_T particles

- → jet-medium interactions
- → medium properties

03/27/12

10

Workshop "High-pT Physics at LHC", Hanau

Barbara Betz

RHIC

VS.

LHC

The Nuclear Modification Factor

RHIC & LHC 2002 prediction based on pQCD 10 Au+Au - 200 GeV (central collisions): — dN⁹/dy=200–350 Direct y, y* [PHENIX] • WA98 π⁰ (17.4 AGeV) RAA SPS Inclusive h [±] [STAR] — dN⁹/dv=800–1200 π⁰ [PHENIX] PHENIX π⁰ (130 AGeV) n [PHENIX] dN⁹/dy=2000-3500 GLV energy loss (dN g /dy = 1400) ▼ PHENIX π⁰ (200 AGeV) * STAR h[±] (200 AGeV) $T_{AA}d\sigma^{pp}$ $R_{AA}(p_{T})$ N_{coll} scaling 0.1 LHC N_{part} scaling 10⁻¹ Au+Au at s^{1/2}=17, 200, 5500 AGeV 0.01 2 12 14 16 18 20 6 8 10 10 100 p_T (GeV/c) p_⊤ [GeV] D'Enterria et al., Springer Lecture Notes Physics (LNP) 2009 Vitev et al., Phys. Rev. Lett. 89, 252301 (2002)

→ R_{AA} @RHIC is flat, R_{AA} @LHC strongly increases with p_T → p_T <20 GeV: R_{AA} @LHC < R_{AA} @RHIC

The R_{AA} at RHIC vs. LHC

→ Remarkable similarity of jet quenching at RHIC and LHC

 \rightarrow Puzzle: RHIC constrained models tend to overquench R_{AA} @LHC

→ Is the jet-medium coupling at LHC weaker? By how much?

Energy-Loss Mechanisms I

Generic model of jet-energy loss:

RHIC & LHC

$$\frac{dP}{d\tau}(\vec{x}_0,\phi,\tau) = -\kappa P^a(\tau) \tau^z T^{c=2-a+z}[\vec{x}_{\perp}(\tau),\tau,b]$$

considering Bjorken expansion for $\tau_0 = 1$ fm, including fragmentation,

and examining an "averaged scenario" for Glauber and CGC-like in. cond. B.Betz et al., PRC 84, 024913 (2011)

11 2

CGC-like, deformed Glauber

in. cond. (dcgc1.2): B.Betz et al., PRC 86, 024903 (2012)

$$x \to s_x x, \quad y \to s_y y$$

$$\sqrt{\langle x^2 \rangle_{\text{CCC}}}$$

$$s_x = \sqrt{\frac{\langle x^2 \rangle_{\text{CGC}}}{\langle x^2 \rangle_{\text{Gl}}}}, \quad s_y = \sqrt{\frac{\langle y^2 \rangle_{\text{CGC}}}{\langle y^2 \rangle_{\text{Gl}}}}$$

with the assumption

$$\epsilon_{\rm CGC} = f \cdot \epsilon_{\rm Gl} \qquad f = 1.2 \pm 0.1$$

Jet-energy and path-length

dependencies (4 main scenarios):

Quark-Gluon-Plasma meets Cold Atoms - Episode III

Energy-Loss Mechanisms II

Generic model of jet-energy loss:

- $\frac{dP}{d\tau}(\vec{x}_0,\phi,\tau) = -\kappa P^a(\tau) \tau^z T^{c=2-a+z}[\vec{x}_{\perp}(\tau),\tau,b]$
- a=1, z=0: Bethe-Heitler limit energy loss of charged particles passing through matter, based on the Dirac equation and the Born approximation for the interaction of the particle with the field of a nucleus.
- a~0, z~1: Landau-Pomeranchuk Migdal (LPM) pQCD

quantum interferences between successive scatterings (LPM effect) leads to a suppression of the radiation spectrum compared to Bethe-Heitler.

- a=1/3, z=1: lower bound of power a in falling string scenario A. Ficnar, arXiv: 1201.1780
- a=1, z=2: "AdS/CFT" model J. Jia et. al., PRC 82 (2010), 024902
 - **Cold atoms** Y. Nishida, arXiv: 1110.5926 Boltzmann eq. with 2 and 3-body scatterings.

	a	\mathbf{Z}	С	in. cond.
0	0	1	3	Glauber
2	1/3	1	8/3	Glauber dcgc1.2
6	1	2	3	"Jia" dcgc1.2
		\checkmark		

RHIC & LHC

A. Ficnar, arXiv: 1201.1780

→ If there are collective d.o.f. (phonons), radiative energy loss with z>0 is possible

• a<0, z=0:

15

spectators

RHIC

VS.

LHC

R_{AA} and v_2 at RHIC vs. LHC

Extrapolation from RHIC to LHC energies leads to an overquenching W. Horowitz et al, Nucl. Phys. A 872 (2011) 265 of the R_{AA} at LHC energies

Reduced Jet-Medium Coupling

What is the physical meaning of a reduced coupling? pQCD: $\kappa\propto\alpha^3$

$$\begin{split} \alpha_{\rm LHC} &= (\kappa_{\rm LHC}/\kappa_{\rm RHIC})^{1/3} \alpha_{\rm RHIC} \qquad \alpha_{\rm RHIC} \sim 0.3 \\ \text{fit to LHC most central data: } \alpha_{\rm LHC} \sim 0.24 - 0.28 \\ \text{(independent of initial time)} \\ \text{B.Betz et al., PRC 86, 024903 (2012)} \end{split}$$

→ Reasonable moderate reduction of the running coupling

AdS/CFT: $\kappa \propto \sqrt{\lambda}$ \leftarrow t'Hooft coupling

 $\lambda_{\rm LHC} = (\kappa_{\rm LHC} / \kappa_{\rm RHIC})^2 \lambda_{\rm RHIC} \qquad \lambda_{\rm RHIC} \sim 20$ (heavy quarks)

with the values used: $\lambda_{\rm LHC} \sim 5 - 10$

→ Rather strong conformal symmetry breaking over a narrow temperature interval (1-2)T_C is required Non-conformal gravity dual generalizations are under construction (Mia, Ficnar, Noronha, ...)

08/29/12

$R_{AA}(p_T)$ at the LHC

→ Linear p_T -dependent (a=1) model describes RHIC p_T <10 GeV data well but is falsified at LHC

 \rightarrow Rapid rise of $R_{AA}(p_T)$ rules out any model with dE/dx ~ $E^{a>1/3}$

RHIC

LHC

VS.

$R_{AA}(p_T)$ at RHIC

sPHENIX Upgrade Concept, arXiv:1207.6378

08/29/12

Fixed vs. Temperature-Dependent Coupling

Temperature-dependent Coupling

$R_{AA}(p_T)$ at LHC

 \rightarrow Temperature-dependent and reduced couplings lead to similar $R_{AA}(p_T)$

 \rightarrow Running coupling CUJET and SL a=0 ζ =1/3,1 all similar for p_T >10 GeV

Summary & Open Problems

- It would be really interesting to measure jet suppression in cold atoms for a more direct comparison with heavy-ion collisions and to learn if cold atoms are opaque.
- Puzzle of overquenching R_{AA} @LHC can be solved:
 - reduced jet-medium coupling at LHC, $\alpha \sim 0.27 0.28$
 - running coupling A. Buzzatti, private communication
 - temperature-dependent jet-medium coupling
 - or a combination

- Rapid rise of $R_{AA}(p_T)$ rules out any model with dE/dx ~ $E^{a>1/3}$
- Cross checking RHIC vs. LHC at all combinations of available data is essential to test consistency of all models

Backup

Initial Conditions

Studying heavy-ion collisions requires a good understanding of the role of the initial conditions:

- Glauber model: incoherent superposition of p+p collisions
- Color Glass Condensate (CGC): saturation effects are included

They differ:

- initial temperature gradients
- initial high- p_T parton distribution
- distance travelled by each parton
- → Leads to a different opacity estimate

B. Alver, Talk at the Glasma Workshop, BNL, May 2010

L. McLerran, Talk at a the CP Violation Workshop, BNL, April 2010

R_{AA} and v_2 at RHIC

Similar results for event-by-event and averaged scenarios

Initial time

Initial time

 $\tau_0 = 1 \text{fm} \rightarrow \text{Assumption: NO energy loss within 1 fm}$

- pQCD does not give excuse for this ansatz, $\tau_0 = 0$ fm most natural assumption Adare et al, Phys. Rev. Lett. **105**, 142301 (2010)
- describes formation time of hydrodynamics
 → no pressure at early times, everything is free flow
- $\tau_0 = 1 \text{fm} \rightarrow \text{essentially equivalent to AdS/CFT}$ energy loss suppression of early times
- → v₂(high- p_T) not sensitive to long distance dE/dx ~ l¹ vs. dE/dx ~ l², but to short distance properties < 1fm!</p>
- → We cannot access the center of the collision!

UrQMD Simulartion, H. Weber

$R_{AA}(p_T, Centrality)$ at LHC

Remarkably insensitive to the initial conditions

→ It's NOT sufficient to just study ONE variable!

Reduced Jet-Medium Coupling

B.Betz et al., PRC 86, 024903 (2012)

Effective Coupling κ assuming $\tau_0 = 1.0 \text{ fm/c}$							
\sqrt{s}	Glauber	dcgc1.2	Glauber	Glauber	"Jia"		
	a = 1/3	a = 1/3	a = 1/3	a=0	a=1		
	z=1	z=1	z=2	z=1	z=2		
0.20	0.93	1.09	0.55	3.30	0.057		
2.76	0.66	0.66	0.33	2.72	0.017		
LHC/RHIC	0.71	0.61	0.60	0.82	0.33		

Effective Coupling κ assuming $\tau_0 = 0.01 \text{ fm/c}$						
\sqrt{s}	Glauber	dcgc1.2	Glauber			
	z=1	z=1	z=2			
0.20	0.60	0.58	0.44			
2.76	0.45	0.43	0.26			
LHC/RHIC	0.75	0.74	0.59			

Energy-Loss Mechanisms III

$R_{A\!A}$ is a ratio of jet penetrating a QGP to the initial jet spectrum

$$R_{AA}^{q,g}(P_f, \vec{x}_0, \phi) = \frac{dN_{QGP}^{jet}(P_f)}{dyd\phi dP_f^2} \Big/ \frac{dN_{vac}^{jet}(P_f)}{dyd\phi dP_0^2} = \frac{dP_0^2}{dP_f^2} \frac{dN_{vac}^{jet}[P_0(P_f)]}{dyd\phi dP_0^2} \Big/ \frac{dN_{vac}^{jet}(P_f)}{dyd\phi dP_0^2} \Big/ \frac{$$

One needs to determine the $P_0(P_f)$ from the $dP/d\tau$ ansatz

$$P_0(P_f) = \left[P_f^{1-a} + K \int_{\tau_0}^{\tau_f} \tau^z T^c [\vec{x}_{\perp}(\tau), \tau] d\tau \right]^{\frac{1}{1-a}}, \quad K = (1-a)\kappa C_2$$

Fragmentation:

$$R_{AA}^{\pi}(p_{\pi},\phi,N_{part}) = \frac{\left\langle \sum_{\alpha=q,g} \int_{z_{min}}^{1} \frac{dz}{z} d\sigma_{\alpha} \left(\frac{p_{\pi}}{z}\right) R_{AA}^{\alpha} \left(\frac{p_{\pi}}{z},\phi\right) D_{\alpha \to \pi} \left(z,\frac{p_{\pi}}{z}\right) \right\rangle_{\vec{x}_{0},N_{part}}}{\sum_{\alpha=q,g} \int_{z_{min}}^{1} \frac{dz}{z} d\sigma_{\alpha} \left(\frac{p_{\pi}}{z}\right) D_{\alpha \to \pi} \left(z,\frac{p_{\pi}}{z}\right)}$$

Elliptic Flow:
$$v_2^{\pi}(N_{part}) = \frac{\int d\phi \cos\{2\phi\} R_{AA}^{\pi}(N_{part},\phi)}{\int d\phi R_{AA}^{\pi}(N_{part},\phi)}$$

R_{AA} and v_2 at RHIC

0.2

0

1.0

0.8

0.6

0.4

RHIC

(a) z=1

(b) z=1

"Jia" dcgc1.2 model is excluded by the p_{T} -dependence of the R_{AA} [⊭]~ 0.1 at LHC

- a=0, 1/3 scenarios fail to describe the v₂(Centr.)

 \rightarrow Disagreement with 20.2 v₂ data at RHIC FOR 0.1 **THIS** intermediate

 p_{T} -regime

100

0

Glauber, E^{1/3}

Glauber, E

200

Npart

300

400

(z=1,pQCD-like)

 $p_{T} = 7.5 \text{ GeV}$

 $\tau_0 = 1 \text{ fm}$

300

400

(z=2 "AdS/CFT-like")

PHENIX 🛏

0.2

[⊭]∾ 0.1

0 1.0

0.8

0.6

0.4

0.2

0.1

B.Betz et al., PRC 86, 024903 (2012)

0

Β_{AA}^π

(c) z=2

(d) z=2

dcgc1.2, E "Jia" dcgc1.2.

200

Npart

Intermediate $v_2(p_T)$ range (2< p_T <10 GeV)

While hadronization via $1parton \rightarrow 1\pi$ or independent fragmentation approximately preserves elliptic flow at high $2 < p_{\perp} < 6$ GeV [3], parton coalescence enhances v_2 two times for mesons and three times for baryons. Hence, the same hadron elliptic flow can be reached from 2-3 times smaller parton v_2 , i.e., with smaller parton densities and/or cross sections. D. Molnar, J. Phys. G 30, S235 (2004)

→ parts of the v₂(intermediate p_T) could originate from bulk tails see Eqs. (16) – (18) in M. Gyulassy et al., Phys. Rev. Lett. **86**, 2537 (2001)

pure jet fragmentation and absorption models should NOT be expected to fully describe the intermediate p_T -range

$v_2(p_T, Centrality)$ at LHC

- Unlike the intermediate p_T , the deep ultraviolet p_T >10 GeV is much better explained by standard jet tomography at LHC
- For $1 < p_T < 5$ GeV, it is difficult to separate the jet contribution to v_2 from the high- p_T tails of the bulk QGP elliptic flow
- → Very high p_T>10 GeV v₂ is rather insensitive to 20% variations in the eccentricity between Glauber and CGC

Temperature-dependent Coupling

$R_{AA}(p_T)$ at RHIC, LS model

B.Betz et al., in preparation 0.5 Glauber, SL, ζ=1/3, shift -0.01 - - -RHIC dcgc1.2, SL, ζ=1/3 $dE/dx = -\kappa(T)E^{0}\tau^{1}T^{3}$ 0.4 $\zeta = 1/3$ scenario 0.3 $R_{AA}{}^{\pi}$ consistent with RHIC data on $R_{AA}(p_T)$ 0.2 0.1 0 5 10 15 20 25 30 p_T [GeV]

v₂(p_T, Centrality) at LHC, LS model

Small difference between $\zeta = 1/3$ and $\zeta = 1$

Effective Coupling in the LS Model

Effective Coupling κ assuming $\tau_0 = 1.0 \text{ fm/c}$							
$\zeta = \kappa_1/\kappa_2$	in. cond.	\sqrt{s}	κ_1	κ_2			
1/3	Glauber	RHIC&LHC	1.82	5.47			
1/3	dcgc1.2	RHIC&LHC	1.75	5.45			
0	Glauber	RHIC&LHC	0.0	7.65			
1	dcgc1.2	RHIC	3.80	$\kappa_2 = \kappa_1$			
1	dcgc1.2	LHC (red.)	2.66	$\kappa_2 = \kappa_1$			

B.Betz et al., in preparation

The "Geometric Optics" Limit

For the generic energy-loss model

$$\frac{dP}{d\tau}(\vec{x}_0,\phi,\tau) = -\kappa P^a(\tau) \,\tau^z \, T^{c=2-a+z}[\vec{x}_{\perp}(\tau),\tau,b]$$

the initial parton momentum depends on the final parton momentum

$$P_0(P_f) = \left[P_f^{1-a} + K \int_{\tau_0}^{\tau_f} \tau^z T^c[\vec{x}_{\perp}(\tau), \tau] d\tau \right]^{\frac{1}{1-a}}, \quad K = (1-a)\kappa C_2$$

For a=1, this leads to a pure exponential dependence of the initial parton momentum

$$P_0(P_f) = P_f \ e^{\chi_{z,c}}$$

with the jet-energy independent effective opacity

$$\chi_{z,c}(\phi) = \kappa C_2 \int_{\tau_0}^{\tau_f} d\tau \tau^z T^c(\tau,\phi)$$

This corresponds to a generalized "geometric optics" limit.

The Running Coupling

S. Bethke, Prog. Part. Nucl. Phys. 58 (2007) 351

Running Coupling rc-CUJET

Introduce one-loop alpha running

$$\alpha_s(Q^2) = \frac{2\pi}{9} \frac{1}{Log[Q/A]}$$

B. G. Zakharov, JETP Lett. 88 (2008) /81-/86

08/29/12

Running Coupling rc-CUJET

LHC Pions

August 16st, 2012 – Quark Matter 2012, Washington DC

Alessandro Buzzatti – Columbia University

Running Coupling rc-CUJET

PHENIX Pions

PHENIX Collaboration

August 16st, 2012 - Quark Matter 2012, Washington DC

Alessandro Buzzatti – Columbia University

Falling String Scenario

Light quarks in AdS/CFT

Dressed quarks of mass m_Q are dual to strings in the bulk with one or both endpoints on the D7-brane spanning from r = 0 (boundary) to some $r_m \sim 1/m_Q$ and physics of the energy loss of these quarks is related to the dynamics of their dual strings. For light quarks, the D7-brane fills the entire AdS-BH geometry and a way to study their energy loss is to investigate the free motion of the strings that have both of their endpoints on the D7-brane (representing dressed $q\bar{q}$ pairs), the so-called falling strings [2].

Using $\kappa \approx 0.5$ [2] and an unphysically small $\lambda = 1$, we obtain a minimal value of $\chi \approx 8$. Such a high value of χ gives an R_{AA} of a rather low magnitude, indicating strong quenching. Using even lower values of χ , we see that R_{AA} actually has the correct qualitative behavior as displayed by the LHC data [1]. This suggests that the main problem here could be simply in the magnitude of the quenching.

A. Ficnar, QM'12 Poster

Falling String Scenario

A. Ficnar, arXiv: 1201.1780

FIG. 1. Comparison of the (normalized) instantaneous energy loss as a function of time with and without the correction in (4.8). The dashed red curve shows the (uncorrected) dp_0/dt in the radial $\sigma = r$ parametrization, while the solid blue curve is the actual energy loss $d\tilde{p}_0/dt$, as given by (4.8). The energy loss was evaluated at points at a fixed spatial distance from the string endpoint, chosen in such a way that the correction in (4.8) appears clearly. The normalization constant E_0 is the energy of half of the string and $T = 1/(\pi r_h)$ is the temperature. The numerical parameters used are $r_h = 1$, A = 50 and $r_c = 0.1$.

The reason is the following. If, from the solid blue curve in Figure 1, we can roughly conclude that the energy loss is linear in time, $dE/dt \sim t^1$, and we know that $(\Delta x)_{max} \sim E^{1/3}$, it can be shown that this is actually the typical qualitative behavior of energy loss of light quarks in pQCD in the strong LPM regime [18]. This suggests a tempting idea that the phenomenon of light quark jet quenching may have a roughly universal qualitative character, regardless of whether we are dealing with a strongly or a weakly coupled medium.

Furthermore, a known generic feature of pQCD energy loss in the strong LPM regime is the rise of R_{AA} at high transverse momenta p_T , a qualitative behavior exhibited by the LHC data for light quarks [18]. And if we can roughly conclude that here we have the same qualitative behavior of energy loss as in pQCD, there is hope that an R_{AA} computed from a falling string energy loss would yield the same characteristic rise at high p_T . However, if there was a pronounced late-time Bragg peak in the energy loss (the dashed red curve in Figure 1), then the energy loss would scale more like $dE/dt \sim t^2$ and would not yield the same behavior as in pQCD, and therefore might not result in an R_{AA} rising at high p_T [18].