EMMI workshop Quark Gluon Plasma meets Cold Atoms – Episode III

Hirschegg, Austria, August 25-31, 2012

Quantum magnetism of mass-imbalanced fermionic mixtures

Andrii Sotnikov

Goethe University, Frankfurt am Main, Germany

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction: a) ultracold atoms in optical lattices

reflected wave

I. Bloch et al., Rev. Mod. Phys. 80, 885 (2008)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

b) ultracold atoms in optical lattices: advantages

Optical lattice Real crystal

electrons in crystals		atoms in optical lattices	
	tunability	tunability	source
statistics	fermions	bosons/fermions	isotope choice
hopping ampl.	tunable	easily tunable	laser intensity
interaction	repulsive or	attractive/repulsive	Feshbach resonances
	weak attractive,	weak/strong	Feshbach resonances
	short/long-range	short/long-range	atomic dipole moment
disorder	always present	absent/present	additional lasers
		(speckle/box)	
mixtures	two-component	multi-comp., bose-fermi	different species,
	[spin-↑,↓: SU(2)]	[SU(2)SU(2)×SU(6)]	hyperfine states
imbalances	only population	population,	different at. densities
	(very hard)	mass	diff. species, laser int.
geometries	cubic, triangular,	cubic, triangular,	setup of lasers;
	hexagonal,	hexagonal; any (2d)	holographic projections

c) magnetic ordering of ultracold atomic mixtures

At low temperatures (i.e. at low entropies) it is often energetically favorable for a many-body system to have a ground state with the broken symmetry. This is the case for mixtures of 2 and more atomic species (both bosons and fermions) in simple lattice geometries (cubic, square, ...) with integer N_{tot} per site.

• two-component repulsively-interacting mixtures in a cubic lattice:

[[]Y. Li et al., PRA 85, 023624 '12]

[P.R. Kent et al., PRB 72, 060411 '05]

In the Mott-insulator (MI) region, a long-range magnetic order is governed by the second order tunneling processes, $J_{\rm magn} \propto t^2/U$

d) magnetic couplings and types of order at T=0

Z-antiferromagnet"

"XY-ferromagnet" $| \rightarrow \rangle = \frac{1}{\sqrt{2}} (| \uparrow \rangle + | \downarrow \rangle)$

d) magnetic couplings and types of order at T=0

bosons:

eff. Hamiltonian: $\hat{\mathcal{H}}_{eff} = J_z \sum_{\langle ij \rangle} \hat{S}_i^Z \hat{S}_j^Z + J_\perp \sum_{\langle ij \rangle} (\hat{S}_i^X \hat{S}_j^X + \hat{S}_i^Y \hat{S}_j^Y) - h \sum_i S_i^Z$ magnetic couplings: $J_z = 2 \frac{t_A^2 + t_B^2}{U_{AB}} - \frac{4t_A^2}{U_{AA}} - \frac{4t_B^2}{U_{BB}}$, $J_\perp = -\frac{4t_A t_B}{U_{AB}}$

• fermions: will be discussed below in detail

Ultracold fermionic mixtures with mass imbalance in optical lattices

System under study

mixtures of two types of fermions, possible experimental realizations in optical lattices:

- ► ⁶Li−⁴⁰K mixture; [Taglieber *et al.*, PRL 100, 010401 '08]
- mixtures of alkaline-earth atoms $\binom{171}{\text{Yb}}$, $\binom{173}{\text{Yb}}$, $\binom{87}{\text{Sr}}$, ...); [Taie et al, PRL 105, 190401 10; ...]
- state-sensitive optical lattices. [Mandel, et al., PRL 91, '03]

 \Box Fermi-Hubbard Hamiltonian (repulsive interactions, U > 0):

$$egin{aligned} \hat{\mathcal{H}} &= -t_A \sum_{\langle i,j
angle} (\hat{a}_i^\dagger \hat{a}_j + \mathrm{H.c.}) - t_B \sum_{\langle i,j
angle} (\hat{b}_i^\dagger \hat{b}_j + \mathrm{H.c.}) \ &+ U \sum_i \hat{n}_{iA} \hat{n}_{iB} + \sum_i \sum_{lpha = A,B} (V_i - \mu_lpha) \hat{n}_{ilpha}, \end{aligned}$$

- $t_A \neq t_B$: hopping (="mass") imbalance;
- $N_A \neq N_B$: population imbalance (depends on μ_A , μ_B , and V_i).

pseudospin Hamiltonian

□ Fermi-Hubbard Hamiltonian:

$$\begin{split} \hat{\mathcal{H}} &= -t_{A} \sum_{\langle i,j \rangle} (\hat{a}_{i}^{\dagger} \hat{a}_{j} + h.c.) - t_{B} \sum_{\langle i,j \rangle} (\hat{b}_{i}^{\dagger} \hat{b}_{j} + h.c.) & \text{Schrieffer-Wolff} \\ &+ U \sum_{i} \hat{n}_{iA} \hat{n}_{iB} + \sum_{i} \sum_{\alpha = A,B} (V_{i} - \mu_{\alpha}) \hat{n}_{i\alpha}, & t_{A,B} \ll U \\ && n_{Ai} + n_{Bi} \approx 1 \end{split}$$

□ Effective Hamiltonian:

$$\hat{\mathcal{H}}_{eff} = J_{\parallel} \sum_{\langle ij \rangle} \hat{S}_{i}^{Z} \hat{S}_{j}^{Z} + J_{\perp} \sum_{\langle ij \rangle} (\hat{S}_{i}^{X} \hat{S}_{j}^{X} + \hat{S}_{i}^{Y} \hat{S}_{j}^{Y}) - \Delta \mu \sum_{i} S_{i}^{z},$$
[anisotropic Heisenberg (XXZ) model]
• for $t_{A} \neq t_{B}$: $J_{\parallel} = 2(t_{A}^{2} + t_{B}^{2})/U$ is always larger than $J_{\perp} = 4t_{A}t_{B}/U$
due to the imbalance in hopping amplitudes, $SU(2)$ spin symmetry is reduced
to a lower $Z_{2} \times U(1)$ symmetry [Cazalilla et al., PRL 95, 226402 '05]

consequences: ground states, LRO

anisotropic Heisenberg (XXZ) model: interplay between different orderings

$$\hat{\mathcal{H}}_{\text{eff}} = J_{\parallel} \sum_{\langle ij \rangle} \hat{S}_i^Z \hat{S}_j^Z + J_{\perp} \sum_{\langle ij \rangle} (\hat{S}_i^X \hat{S}_j^X + \hat{S}_i^Y \hat{S}_j^Y) - \Delta \mu \sum_i S_i^z, \quad (J_{\parallel} > J_{\perp}).$$

 \Box small pop.imb. & large mas.imb., $\Delta\mu \ll \left(J_{\parallel}-J_{\perp}\right)$:

- the ground state at T = 0 is Z-antiferromagnet (ferrimagnet);
- at large mass imbalance, $t_A \gg t_B \Rightarrow J_{\parallel} \gg J_{\perp}$, one arrives at the Ising model;
- the excitation spectrum is gapped \Rightarrow possibility for a true long-range Z-AF order at T > 0 in low dimensions (d < 3).

 \Box large pop.imb. & small mas.imb., $\Delta \mu \gg (J_{\parallel} - J_{\perp})$:

- the ground state at T = 0 is XY-antiferromagnet (canted AF);
- Mermin-Wagner theorem forbids a true long-range order in XY-plane at T > 0 in low dimensions (d < 3).

(日) (同) (三) (三) (三) (○) (○)

$$\Box \Delta \mu \sim (J_{\parallel} - J_{\perp})$$
 : phase transition (1st order)

critical temperature enhancement ($\Delta \mu = 0$)

□ dynamical mean-field theory (DMFT) analysis:

– TU diagram at half-filling, $\mu = U/2$

 $t = (t_A + t_B)/2, \qquad \Delta t = (t_A - t_B)/(t_A + t_B).$

hopping (mass) imbalance results in growth of the ordered phase

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

additional type of order: CDW ($\Delta \mu = 0$)

- finite-temperature t_A/t_B phase diagram at half-filling:

charge-density wave (CDW): two adjacent sites have different values of double- and zero-occupancy. $D_i = \langle \hat{n}_{Ai} \hat{n}_{Bi} \rangle$, $K_i = \langle (1 - \hat{n}_{Ai})(1 - \hat{n}_{Bi}) \rangle$, c = |D - K|/(D + K), $\overline{D} = (D + K)/2$.

CDW is present only in the ordered region with a finite imbalance

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

real-space analysis for a trap ($\Delta \mu = 0$)

2d optical lattice (R-DMFT):

- CDW is clearly seen in the bulk region with AF ordering;
- "ferromagnetic" ring emerges from a wider distribution of a lighter component:
- R-DMFT better describes the detailed structure in the intermediate region than LDA+DMFT (interplay between AFM-bulk and FM-shell).

entropy analysis for a homogeneous system ($\Delta \mu = 0$)

- entropy calculations are based on the Maxwell relation in the integral form, $s(\mu_0, T) = \int_{-\infty}^{\mu_0} (\partial n / \partial T) d\mu$.

• mass-imbalanced mixtures allow a much closer approach (at equal given entropy) to the critical region;

• in the Fermi-liquid region the entropy increases with hopping imbalance.

including population imbalance: $\Delta \mu \neq 0$

– eff. Hamiltonian: $\mathcal{H}_{\text{eff}} = J_{\parallel} \sum_{\langle ij \rangle} S_i^z S_j^z + J_{\perp} \sum_{\langle ij \rangle} (S_i^x S_j^x + S_i^y S_j^y) - \Delta \mu \sum_i S_i^z$

evolution of t_A - t_B diagrams with $\Delta \mu$

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

real-space analysis: LDA+DMFT (3d)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

real-space analysis: R-DMFT (2d) [positive $\Delta \mu$]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

real-space analysis: R-DMFT (2d) [negative $\Delta \mu$]

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Conclusions

- mass imbalance enhances the critical temperature;
- ordered phase can be approached with the higher entropy values;
- possibility for a long-range order in low dimensions;
- additional type of order: charge-density wave in the AF phase;
- rich phase diagram in the presence of both population and mass imbalance (canted-AF and ferrimagnetic ordering);
- real-space distributions for a trap: different orderings in the bulk, multiple-shell structures.

Special thanks to:

- Walter Hofstetter (Frankfurt);
- Daniel Cocks (Frankfurt);
- Michiel Snoek (Amsterdam).

More details:

A. Sotnikov *et al.*, PRL **109**, 065301 (2012). [arXiv:1203.4658]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank you for your attention!