
Unilac Workshop 19.07.-20.07.2023

Development Steps

• Development 2023 - Data Supply Test

• Development 2024 (Beamtime '25) - Emergency Backup System

• Development 2025 (Beamtime '26) - ChainGroups with StandAloneChains for Unilac other

Machines still use PatternGroup and Patterns

• Development 2026+ - ChainGroups with StandAloneChains for the whole Machine

2023-10 2024-01 2024-04 2024-07 2024-10 2025-01 2025-04 2025-07 2025-10 2026-01 2026-04 2026-07 2026-10

04.-10.09.2023 DryRun 2-23

MS - Ready for Data Supply Test

02.-13.10.2023 DryRun 3-23

06.-19.12.2023 Engineering Run

25.-31.01.2024 DryRun 1-24

09.02.-27.06.2024 Beamtime

MS - Emergency Backup System

09.12.-15.12.2024 DryRun 2-24

17.02.-25.06.2025 Beamtime

MS - ChainGroups with StandAloneChains for Unilac

MS - ChainGroups for the whole machine ('26+)

Overview

Development 2023 - Data Supply Test

Assumption

• Unilac PZ still exists and is used for timing etc.

• LSA only resupplies/overwrites the device data for a specific Unilac accelerator to verify that

key devices can be supplied with correct data from LSA

Requirements

• Needed Unilac devices are adapted for LSA Data Supply (removal of complex types)

https://pad.acc.gsi.de/#unilac-workshop-1907-20072023
https://pad.acc.gsi.de/#unilac-workshop-1907-20072023
https://pad.acc.gsi.de/#unilac-workshop-1907-20072023
https://pad.acc.gsi.de/#development-steps
https://pad.acc.gsi.de/#development-steps
https://pad.acc.gsi.de/#development-steps
https://pad.acc.gsi.de/#development-2023---data-supply-test
https://pad.acc.gsi.de/#development-2023---data-supply-test
https://pad.acc.gsi.de/#development-2023---data-supply-test
https://pad.acc.gsi.de/#assumption
https://pad.acc.gsi.de/#assumption
https://pad.acc.gsi.de/#assumption
https://pad.acc.gsi.de/#requirements
https://pad.acc.gsi.de/#requirements
https://pad.acc.gsi.de/#requirements


• Needed Unilac devices are imported into LSA (need to be in FESA DB, calibration curves in

CDB, etc.)

• Unilac Model for devices under test is finished

• If devices using WR timing are tested, we need timing bridges that translate the events from

MIL -> WR Timing appropriately

LSA

Two options:

1. Use a "Ghost"Pattern without Group, hardcoded to a Test Unilac Accelerator

2. Unilac PatternGroup with one Pattern, hardcoded to a Test Unilac Accelerator

Development 2024 (Beamtime '25) - Emergency Backup

System

Assumption

• One beam at a time, no full parallelization possible

• No major change in the current implementations, only minor adaptations for Unilac

• SIS18 -> Unilac request still “ad-hoc” on request like today (through UNI-PZ Gateway?)

• All Unilac devices are adapted for LSA Data Supply

• All Unilac devices are imported into LSA

• Unilac Model for devices is finished

• Ion Source Timing can be supplied (no concept in LSA)

Requirements

• Unilac Timing <-> WR Timing Bridge is still used

• Dedicated Timing Master that supports 50 Hz sync

◦ Single Thread probably enough

◦ 15 edges for the default pattern, since we probably want 15 patterns and minimal

implementation changes

• UNI-PZ Gateway or something else takes care of “Signaling” a request from the SIS18 DM to

the Unilac DM

• Timing bridges translate the events from WR -> MIL Timing appropriately

• BSS supports a Unilac PatternGroup / Pattern Graph that can be supplied to the Unilac DM

◦ Generated Unilac Pattern Group should support 15 patterns

◦ Stopping a Unilac Pattern Group should (probably) finish the Pattern Group

https://pad.acc.gsi.de/#lsa
https://pad.acc.gsi.de/#lsa
https://pad.acc.gsi.de/#lsa
https://pad.acc.gsi.de/#development-2024-beamtime-25---emergency-backup-system
https://pad.acc.gsi.de/#development-2024-beamtime-25---emergency-backup-system
https://pad.acc.gsi.de/#development-2024-beamtime-25---emergency-backup-system
https://pad.acc.gsi.de/#assumption-1
https://pad.acc.gsi.de/#assumption-1
https://pad.acc.gsi.de/#assumption-1
https://pad.acc.gsi.de/#requirements-1
https://pad.acc.gsi.de/#requirements-1
https://pad.acc.gsi.de/#requirements-1


◦ Changing the Unilac Pattern Group should not stop the Unilac e.g. write new pattern,

switch edge, delete old pattern (or similar functionality that achieves the same)

LSA

• Creation of a Unilac PatternGroup that is explicitly written into the Unilac DM

• The Unilac PatternGroup contains max 15 Patterns incl. placeholder patterns that are played

round-robin

◦ Pattern - Beam, the “real” timing and settings that should be used

◦ Pattern - No Beam, a Dummy Pattern to waste time to fit the Ion Source repetition rates

(x 20ms set by repetition rate), reduction (untersetzung), etc.

• Clarify and Implement scheduling related questions

◦ Dummy Patterns

▪ What does a dummy pattern do?

▪ Would one dummy pattern be enough?

◦ How to handle repetitions?

◦ Do we need to generate an appropriate default schedule (warmhaltepulse) ?

• Only use / force ByPass Trim for Unilac

◦ on timing change use BSS to update the relevant pattern and wait until the old pattern is

deleted (bss blocks until deletion or until a timeout is reached)

Development 2025 (Beamtime '26) - ChainGroups with

StandAloneChains for Unilac other Machines still use

PatternGroup and Patterns

Assumption

• Everything is controlled using DMs, no PZ anymore

• For Unilac LSA only generates Chain Graphs, Scheduling these Graphs is moved to BSS

• Move to Oracle 21 - not clear if Acc6 Instant Client Driver is still working

Requirements

• One Timing Graph for the whole facility that is supplied to the DMs, or something similar to

“edges” between UNI-DM and RING-DM

◦ so we can configure edges to start e.g. SIS18 graphs from the Unilac

◦ so we can have “control graphs” that synchronize the runtime behaviour and “fork” other

graphs

• Additional Timing Graph Functionality

https://pad.acc.gsi.de/#lsa-1
https://pad.acc.gsi.de/#lsa-1
https://pad.acc.gsi.de/#lsa-1
https://pad.acc.gsi.de/#development-2025-beamtime-26---chaingroups-with-standalonechains-for-unilac-other-machines-still-use-patterngroup-and-patterns
https://pad.acc.gsi.de/#development-2025-beamtime-26---chaingroups-with-standalonechains-for-unilac-other-machines-still-use-patterngroup-and-patterns
https://pad.acc.gsi.de/#development-2025-beamtime-26---chaingroups-with-standalonechains-for-unilac-other-machines-still-use-patterngroup-and-patterns
https://pad.acc.gsi.de/#assumption-2
https://pad.acc.gsi.de/#assumption-2
https://pad.acc.gsi.de/#assumption-2
https://pad.acc.gsi.de/#requirements-2
https://pad.acc.gsi.de/#requirements-2
https://pad.acc.gsi.de/#requirements-2


◦ Creation of threads (basics should be already there from the Unilac Booster

implementation)

▪ Using the next free / available thread atomic

◦ Start / Fork execution of threads

◦ Joining of threads, depending on the (re)implementation of some SRM features

◦ Thread local storage of some values

◦ Cleanup of “old” unused graph pieces (to be discussed how to handle)

• BSS needs an additional endpoint supporting ChainGroups and Chains

• Application using the famous Peter-Gerhard-Algorithm to generate a Chain Group

Scheduling

LSA

• Support for StandAloneChains

• Discuss and implement new interface to BSS Scheduling

◦ Context Graph & Schedule Graph

◦ Signals, also use by-name convention for CGs/Unilac or more explicit?

Development 2026+ - ChainGroups with StandAloneChains

for the whole Machine

Assumption

• Patterns and PatternGroups are removed, everything is moved to ChainGroups /

StandAloneChains

• LSA only generates Chain Graphs for everything, Scheduling these Graphs is moved to BSS

/ Scheduling-App

Requirements

• Apps are ChainGroup-aware

• Timing Master “cluster” available

• BSS needs more structural Chain information

◦ to decide which chain groups can run in parallel (e.g. Unilac + Cryring Injector)

◦ to switch chaingroups on request (e.g. storage ring mode / runtime control)

LSA

https://pad.acc.gsi.de/#lsa-2
https://pad.acc.gsi.de/#lsa-2
https://pad.acc.gsi.de/#lsa-2
https://pad.acc.gsi.de/#development-2026---chaingroups-with-standalonechains-for-the-whole-machine
https://pad.acc.gsi.de/#development-2026---chaingroups-with-standalonechains-for-the-whole-machine
https://pad.acc.gsi.de/#development-2026---chaingroups-with-standalonechains-for-the-whole-machine
https://pad.acc.gsi.de/#assumption-3
https://pad.acc.gsi.de/#assumption-3
https://pad.acc.gsi.de/#assumption-3
https://pad.acc.gsi.de/#requirements-3
https://pad.acc.gsi.de/#requirements-3
https://pad.acc.gsi.de/#requirements-3
https://pad.acc.gsi.de/#lsa-3
https://pad.acc.gsi.de/#lsa-3
https://pad.acc.gsi.de/#lsa-3


• Remove Patterns & PatternGroups

• Generate injection / extraction information / markers

• Add StandAloneChains & ChainGroups features

◦ support for Synchrotron Mode

◦ support for Storage Ring Mode

• Eventually adapt LSA<->BSS interface

• Switching Chain Groups

◦ straight

1 switch on -> Ramp up devices once to inter cycle level.

1 operate machine

1 switch off -> Ramp down devices

◦ slanted - Pre / Post / “Basic Unilac Filler Chain Group” for switching Chain Groups on

Request

LSA - other

• Development 2023

◦ continue RMI -> REST interface migration

◦ RBAC test

◦ New Particle Interface Prototype

◦ Move LSA Test DBs to OracleXE containers (effort regarding Containerization /

Kubernetes, Testing)

• Development 2024

◦ complete RMI -> REST interface migration

◦ work on LSA updates / notification using RDA3

• Development 2025

◦ Move to Oracle 21

• Development 2026+

◦ Focus on SIS100 concepts

◦ Scheduling 2.0 (chain from SIS18 to SIS100)

◦ SubChains that not span all particle transfers (e.g. booster SubChains only span SIS18

and not span all particle transfers up to SIS100)

◦ Work on “beam” (which chains inject into which chain)

https://pad.acc.gsi.de/#lsa---other
https://pad.acc.gsi.de/#lsa---other
https://pad.acc.gsi.de/#lsa---other

