
Concettina Sfienti 
Johannes Gutenberg-Universität - Institut für Kernphysik, Mainz

Frontiers in precision 
nuclear physics

Per Aspera ad Astra…



Aiming at simplicity…

#MakeHumansSmartAgain
… per aspera ad astra …

Ursus Wehrli, Noch mehr Kunst aufräumen



#MakeHumansSmartAgain
… per aspera ad astra …

Ursus Wehrli, Noch mehr Kunst aufräumen

…on the far side of complexity!

Seurat, Les Poseuses

…connecting quarks with stars …

Courtesy R.F.Carsten (WNSL)



Concettina Sfienti 
Johannes Gutenberg-Universität - Institut für Kernphysik, Mainz

 The 4-horsemen of  the Apocalypse 

 Rebellious skins 

…to infinity and beyond

Per Aspera ad Astra…
A romance in three acts with 4, 208 and (for all practical 

purposes)  ∞ performers!



“Scales”: First constraint

Modern nuclear 
physics is about... UNEDF SciDAC Collaboration 

Universal Nuclear Energy Density Functional

➜Linking QCD to many body systems
#MakeHumansSmartAgain

… per aspera ad astra …



A scientific… tango

#MakeHumansSmartAgain
… per aspera ad astra …

Few)Body)Program:)from)MAMI)to)MESA)

C.#Sfienti#for#project#N#

Sonia Bacca

• The coupling constant << 1 
  “With the electro-magnetic probe, we can immediately relate the cross section to the transition matrix element

    of the current operator, thus to the  structure of the target itself ”
  [De Forest-Walecka, Ann. Phys. 1966]     
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• In few-body physics one can perform exact calculations both for bound and
   scattering states           test  the nuclear theory on light nuclei
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• Provide useful numbers for astrophysics: 
- radiative capture reactions

- interaction of photons with nucleonic matter ...
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SMðq;!Þ ¼ SresMðq;!Þ þ SbgMðq;!Þ: (3)

For a narrow resonance one defines the resonance transi-
tion form factor

jFMðqÞj2 ¼ 1

Z2

Z
d!SresMðq;!Þ: (4)

In Fig. 1, we show results for FMðqÞ with two different
Hamiltonians including realistic three-nucleon forces
(3NFs) in comparison to experimental data from inelastic
electron scattering [4,10,11]. As Hamiltonians we use
(i) the Argonne V18 (AV18) [12] NN potential plus the
Urbana IX (UIX) [13] 3NF, (ii) an EFT based potential,
where we take the NN potential [14] at fourth order
(N3LO) in the chiral expansion augmented by a 3NF at
order N2LO [15]. The Coulomb potential is taken into
account in all calculations. Both the EFT and the AV18
NN potentials reproduce the NN scattering phase shifts
with high precision (!2=datum%1). In the EFT calcula-
tions, two different parametrizations of the 3NF have been
used, leading to the red band in Fig. 1. The chiral low
energy constants cD and cE have been determined either by
setting cD to a reasonable value and then fitting cE to the
three-nucleon binding energies [15] (cD ¼ 1 and cE ¼
&0:029) or by fitting to the 3H binding energy and beta
decay [16] (cD ¼ &0:2 and cE¼&0:205). We also display
the result of a previous calculation by Hiyama et al. [17],
with the AV8’ potential, a reduced version of AV18, and a
simplified central 3NF, fitted to the binding energy of 3H.
All three Hamiltonians reproduce the 4He experimental
binding energy within one percent. Surprisingly, the
results for FMðqÞ strongly depend on the Hamiltonian.
Furthermore, the realistic Hamiltonians fail to reproduce
the experimental data. In particular, this is true for the EFT

forces that predict a transition form factor twice as large as
the measured one.
In contrast, the realistic Hamiltonians lead to rather

similar results for the elastic form factor FelðqÞ of 4He,
defined as

FelðqÞ ¼
1

Z
h0jMðqÞj0i: (5)

In Fig. 2, FelðqÞ is shown for the AV18þ UIX model and
for the chiral EFT potentials. The fact that the results do
not differ significantly is not very surprising, since both
Hamiltonians give a very similar result for the radius:
1.432(2) fm [18] for AV18þ UIX and 1.464(2) fm for
N3LO plus theN2LO of Ref. [16], which is not far from the
experimental value of 1.463(6) fm (obtained from the
charge radius of Ref. [19] as explained in Ref. [20]).
Also shown in Fig. 2 is the result by Viviani et al. [21]
with theAV18þ UIX potential, which is indistinguishable
from ours, proving the level of accuracy of contemporary
four-body calculations.
Calculational method.—Our calculations are based on

the diagonalization of the Hamiltonian on a square inte-
grable hyperspherical harmonics (HH) basis. The HH con-
vergence is accelerated using the Suzuki-Lee unitary
transformation, which then leads to the effective interac-
tion HH (EIHH) method [22,23]. The high accuracy of this
approach can be inferred from the benchmark results in
Ref. [24] and also here from Table I, where we present the
binding energies of three- and four-body nuclei obtained
from EFT potentials including 3NFs. We agree with other
methods at the 10 keV level.
Results forSMðq;!Þ are often obtainedby discretizing the

continuum, where the Hamiltonian is represented on
a finite basis of square integrable functions and is then
diagonalized to obtain the eigenvalues e" and eigenfunctions

0 1 2 3 4

q
2

 [fm
-2

]

|F
M

 |2 /4
π 

* 
10

-4

Koebschall et al. 
Frosch et al. 
Walcher
Hiyama et al.
AV18+UIX

NN(N
3
LO) +

3NF(N
2
LO)

0

1

2

3

4

5

FIG. 1 (color online). Theoretical transition form factor
jFMðq2Þj2 with Gn

E ¼ 0 calculated with various force models:
AV18þ UIX (full line), N3LOþ N2LO (red band), result from
Ref. [17] (dot-dashed line). Data from Frosch et al. [10],
Walcher [4], and Köbschall et al. [11].
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FIG. 2 (color online). Elastic form factor jFelðq2Þj of 4He
calculated with various force models: AV18þ UIX (full line),
N3LOþ N2LO (red band), result from Ref. [21] with AV18
+UIX (dot-dashed line). Data from Frosch et al. [36].
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In Fig. 2, FelðqÞ is shown for the AV18þ UIX model and
for the chiral EFT potentials. The fact that the results do
not differ significantly is not very surprising, since both
Hamiltonians give a very similar result for the radius:
1.432(2) fm [18] for AV18þ UIX and 1.464(2) fm for
N3LO plus theN2LO of Ref. [16], which is not far from the
experimental value of 1.463(6) fm (obtained from the
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Also shown in Fig. 2 is the result by Viviani et al. [21]
with theAV18þ UIX potential, which is indistinguishable
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vergence is accelerated using the Suzuki-Lee unitary
transformation, which then leads to the effective interac-
tion HH (EIHH) method [22,23]. The high accuracy of this
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binding energies of three- and four-body nuclei obtained
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continuum, where the Hamiltonian is represented on
a finite basis of square integrable functions and is then
diagonalized to obtain the eigenvalues e" and eigenfunctions

0 1 2 3 4

q
2

 [fm
-2

]

|F
M

 |2 /4
π 

* 
10

-4
Koebschall et al. 
Frosch et al. 
Walcher
Hiyama et al.
AV18+UIX

NN(N
3
LO) +

3NF(N
2
LO)

0

1

2

3

4

5

FIG. 1 (color online). Theoretical transition form factor
jFMðq2Þj2 with Gn

E ¼ 0 calculated with various force models:
AV18þ UIX (full line), N3LOþ N2LO (red band), result from
Ref. [17] (dot-dashed line). Data from Frosch et al. [10],
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N3LOþ N2LO (red band), result from Ref. [21] with AV18
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• Exact calculations both for bound and scattering states

• Energy and momentum transfer MUST be consistent with ChEFT predictions!

S. Bacca et al, PRL110, 042503 (2013)
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and LðE;E0;Γ0Þ, respectively. While the width of the
Gaussian distribution σres includes experimental resolu-
tion effects, the intrinsic width of the resonance is imple-
mented by the full width at half maximum (FWHM) Γ0 of
the Lorentzian distribution. To avoid the complicated

convolution integral, the following approximation is
used:

σ1ðE;E0;σres;Γ0Þ∝ ηLðE;E0;Γ0Þþ ð1− ηÞGðE;E0;σresÞ:
ð1Þ

In this ansatz η ∈ ð0; 1Þ is a parameter, constrained by
σres and Γ0, which regulates the ratio of Gaussian to
Lorentzian distribution [27]. In order to quantify more
precisely the systematic uncertainties of the described
model, a second approach has been used as described
in [26,28]. Within this model, the resonance depends on
two dimensionless parameters,

μ ¼ E − Ethresh

Γ0=2
and μ0 ¼

E0 − Ethresh

Γ0=2
; ð2Þ

with E0 ¼ 20.21 MeV being the central value of the
resonance and Ethresh ¼ 19.815 MeV the continuum proton
threshold. The resonance parametrization is taken as

σ2ðμ; μ0Þ ∝
ðμ=μ0Þ

1
2

ðμ − μ0Þ2 þ ðμ=μ0Þ
: ð3Þ

As a consequence of Eqs. (2) and (3), no resonance
events appear below this threshold, as long as resolution
and radiative effects are neglected. Resolution effects are
implemented in this parametrization by an additional
uncertainty of the momentum and angular reconstruction
of the spectrometers. This uncertainty is represented by a
superposition of two Gaussian distributions with different
widths.
To match simulation and data, a complete determination

of the previously unknown parameters σres and Γ0 is
mandatory. The experimental resolution for both para-
metrizations is determined by the width of the 4He elastic
peak, which is broadened by resolution effects and radiative
losses. These two contributions are disentangled by
Monte Carlo techniques and verified by data. In order to
describe the background contribution from the 4He con-
tinuum, two model descriptions have been applied to
quantify model uncertainties. One model (BG1) describes
the continuum under the resonance peak as a linear
function, while the second model (BG2) is based on the
assumption that the resonance is located on the left tail of a
broad giant resonance at 25.95 MeV with IP ¼ 1− [29]. For
the determination of Γ0, the simulations of Eqs. (1) and (3),
as well as the two background models, were compared to
data with Γ0 as the free parameter to be optimized.
Our results for Γ0, summarized in Table I, agree within

error bars with previous data from Walcher [12,30] and
Köbschall et al. [13], while they disagree with data from
Frosch et al. [14], and can be compared to the only
theoretical calculation of 4Heðe; e0Þ, which resulted in
Γ0 ¼ 180ð70Þ keV, using a central NN force [31].

FIG. 2. Typical mmiss mass spectrum of the monopole reso-
nance of 4He. Shown with blue points are the data for 690 MeV
beam energy with a central scattering angle of 24.0° (correspond-
ing to aQ2 value of 1.99 fm−2). They are compared to simulation
of the monopole resonance (solid green online) and background
model BG2 (black dotted line) based on the parametrization of
[26]. The dashed line shows the combination of background
model and resonance simulation.

FIG. 1. Missing mass spectrum of 4He. Shown in blue are data
for 450 MeV beam energy and a central scattering angle of 20.1°
(corresponding to a Q2 value of 0.59 fm−2.) The data are
compared to simulation of the 4He elastic peak (green) and
background (BG) contributions from the 27Al target (orange). The
contributions from the 27Al elastic peak are located at mmiss < 0
due to recoil corrections applied to the scattered electrons. Inset:
shows the area of interest, the monopole resonance centered at
20.21 MeV.
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The transition form factor describes the dynamics of 
excitation between resonance and ground state 
depending on Q2



The four horsemen of the Apocalypse

#MakeHumansSmartAgain
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The transition form factor is obtained from the exper-
imental cross section divided by the normalized Mott cross
section,

jFM0þðQ2Þj2 ¼
!
dσ
dΩ

"

Exp
=

!
dσ
dΩ

"

Mott
: ð4Þ

It is beneficial to take advantage of the simultaneously
measured elastic peak of 4He to avoid fluctuations in the
data caused by different luminosities and determine the
monopole form factor relative to the elastic peak. Both
quantities, the elastic peak and the monopole resonance,
exhibit a slightly different Q2 which was accounted for
when evaluating the form factor ratio. The value of Q2 is
determined by a binned distribution taking into account the
applied data cuts. Those cuts were first restricted to
%240 keV around both peaks to keep the influence of
the continuum background to the form factor ratio small.
The relative transition form factor established this way is
then in a last iteration step improved by extending themmiss
cut from 19.5 to 22 MeV to include large contributions of
the monopoles radiative tail. For this purpose, the reso-
nance peak is simulated with parametrization σ1 and σ2 and
the valid transition form factor ratio and in combination
with the backgrounds BG1 and BG2, respectively, opti-
mized to data in order to minimize the χ2. Within this
minimization procedure, the simulation of the monopole
resonance peak is allowed to float only by a factor, which is
then used to adjust the transition form factor. Further details
of the data analysis can be found in the supplemental
material [32].
Our final experimental results for the monopole tran-

sition form factor are shown in Fig. 3, in comparison to the
χEFT calculation from Ref. [11]. A third order basis spline
polynomial is used to fit the data. To account for the model
uncertainties, the analysis was repeated with all remaining
combinations of resonance parametrizations and back-
ground models. Analyzing the transition form factor with
model BG1 leads to a variation of δBG model ¼ %3.2%
around the results obtained by BG2, see Table II.
However, a constant shift of the transition form factor to
higher or lower values by a different continuum model
could not be verified. On the contrary, analyzing the data
with σ1 from (1) leads to an average shift of the transition
form factor of δres model ¼ −5.8% and thus to smaller
values. These model dependencies were added linearly

to the (blue) model confidence band in Fig. 3, representing
the model uncertainty of the data. The contributions to the
total systematic uncertainty on the extraction of the
transition form factor are summarized in Table II. A
conservative error of the elastic form factor of 4He, used
to normalize the data, has been estimated as point-to-point
uncertainty to 0.5% as given by the authors in [20].
Background subtraction of the elastic tails from 4He,
27Al, and the quasielastic scattering off 27Al contribute to
the systematic uncertainty with up to 1%. The FWHM of
the monopole resonance Γ0 influences the transition form
factor jFM0þðQ2Þj2 by 4% and contributes the major
uncertainty. This uncertainty has been estimated by varying
Γ0 within a realistic error range and observing the effect
onto the transition form factor. All systematic errors were
added quadratically to the statistical errors. Our results
agree with previous data [13,14] albeit having a much
higher precision and thereby reinforce the tension with
ab initio calculations [11], where, for example, the χEFT
result is 100% too high at Q2 ¼ 1.5 fm−2 with respect to
the new data.
Since the low-q2 part of the transition form factor allows

for a direct access to gross features of the 0þ2 state, we shall
focus now on discussing this q2 range. A q⃗ → 0 expansion
yields [33,34]

TABLE I. FWHM Γ0 for the investigated resonance para-
metrizations σ1 Eq. (1) and σ2 Eq. (3) and the two background
parametrizations BG1 and BG2.

BG1 (keV) BG2 (keV)

σ1 268% 43 285% 33
σ2 262% 47 288% 39

FIG. 3. Monopole transition form factor as a function of Q2, in
comparison to previous data [12–14] and χEFT prediction [11]
(see text for details).

TABLE II. Contributions to the systematic uncertainties of the
transition form factor and the model dependencies.

Source ΔjFM0þðQ2Þj2 (%)

Background %1
4He ground state form factor %0.5
ΔΓ0 %4

Model uncertainties

BG1-BG2 %3.2
σ1 − σ2 −5.8
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and allows extraction of the monopole transition matrix
element hr2itr and the transition radius R2

tr ¼ hr4itr=hr2itr,
which provide information about the spatial structure of the
resonant state 0þ2 . We use this formula to extract these
quantities both from experimental data and theoretical
calculations using a three-parameter fit. For the theory,
given that FM0þ was calculated on a grid of q every
0.25 fm−1 [11], we use four available low-momentum
points at q2 ≤ 1 fm−2, assigning to each point a 1%
numerical uncertainty. The fit values for hr2itr and Rtr
are compatible with what we obtain from a direct calcu-
lation using the transition density in coordinate space [35].
For the experiment, we fit the six data points below q2 ¼
1 fm−2 neglecting any recoil and assuming a sharp reso-
nance. A physics boundary condition FM0þðQ2 → 0Þ ¼ 0
(which arises from the fact that the inelastic form factor is
going to zero for q2 → 0) was implemented in the spline
polynomial fit function of the form factor. The obtained
values for hr2itr and Rtr are reported in Table III with the
uncertainties given by the fit, and the corresponding curves
based on the mean values of Table III are shown in Fig. 4.
We notice that in the range of 0.2 ≤ q2 ≤ 1 fm−2 the

simplified potential used by Hiyama et al. [36] leads to
agreement with the experimental data, while the realistic
calculations do not. Because the calculation by Hiyama
et al. was performed with a distinct few-body method, in
this Letter we recalculate it with the same method as in
Ref. [11] to infer whether the difference stems from the
numerical solver or from the Hamiltonian. In Fig. 4, we
show that we (gray solid line) reproduce the result of
Ref. [36] (black dashed line). We assign a 1% uncertainty to
our calculation by taking the difference from the largest and
second largest model-space results. While describing the

data, the AV8’þ central 3N potential is, however, not
compatible with the experimental fit value of hr2itr, while
the realistic AV18þ UIX is. Overall, we see that theory
predicts a smaller value ofRtr than the experimental fit, and
the χEFT prediction deviates the most from experiment,
even at low momenta. The combination of the new
experimental data and calculations prove that there is a
puzzle, which is not due to the applied few-body method,
but rather to the modeling of the nuclear Hamiltonian. The
experimental transition radius is ≈10% larger than the
calculation with chiral NN-interaction predicts. This might
indicate that the hard core of the interaction is too weak,
effectively producing a too narrow wave function.
Interestingly, another recent investigation [37] shows that
the 0þ2 state in 4He is very sensitive to the particular
parametrization of the chiral 3N force.
Further theoretical work is needed to resolve the

α-particle monopole puzzle. A systematic experimental
verification of future theoretical developments will be
opened up by the low-energy electron beam of the new
Mainz Energy-recovering Superconducting Accelerator
(MESA) under construction at [38], which will operate in
the ideal energy regime to test χEFT. Such future generation
experiments will allow us to investigate other observables,
as well as other light nuclei, leading to an improvement of
our current understanding of the nuclear forces.
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FIG. 4. Low-q2 data for the monopole form factor: theory vs
experiment (see text for details).

TABLE III. Values of hr2itr and Rtr: Experiment vs theory.

hr2itr (fm2) Rtr (fm)

Experiment 1.53% 0.05 4.56% 0.15
Theory (AV8’þ central 3N) 1.36% 0.01 4.01% 0.05
Theory (AV18þ UIX) 1.54% 0.01 3.77% 0.08
Theory (χEFT) 1.83% 0.01 3.97% 0.05
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Low Q2-data of FM0+ (Q2) used to determine Monopole Matrix 
Element ME and transition radius Rtr  

→ Information about the spatial structure of the resonance

MONOPOLE MATRIX ELEMENT ME AND TRANSITION RADIUS Rtr

Low Q2-data of FM0+(Q2) used to determine Monopole Matrix Element ME and
Transition Radius Rtr

,! Information about the spatial structure of the resonance state 0+
2

! Fit to determine ME and Rtr

POL. EXPANSION
p

Z2·|FM0+ (Q2)|2

Q2 = ME
6

h
1 - Q2

20 Rtr +
Q4

840
hr6itr
hr2itr

+ O(Q6)
i

with ME = hr2itr & Rtr =
hr4itr
hr2itr

M. Chernykh, PhD Thesis, Darmstadt (2008)

Large dependence of ME & Rtr on
the data sets:

- This work This work & Walcher

ME 1.54 ± 0.05 1.16 ± 0.09

Rtr 4.58 ± 0.15 3.10 ± 0.96

ANALYSIS SYSTEMATIC INVESTIGATIONS OF THE 4HE MONOPOLE 31

Rtr  ≈10% larger than the calculation with chiral 
EFT: hard core of the interaction too weak? 

 Lower energy data needed! 

 Extension to other nuclei (12C?)
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The MAGIX target

electrons

“target nuclei”

new
target

 large energy loss and multiple scattering

 background from target foils

● empty cell measurements

● not the same Eloss, multi scatt

● not for all settings ep experiment

● background model

 background from (thin) ice layer

 spectra distorted by (thin) ice layer
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NO background, energy loss or multiple scattering from 
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target length acceptance issues!



Modern nuclear 
physics is about... 

➜ Unravelling 
the phases of 
nuclear matter

LRP Nuclear Science Advisory Committee(2008)

The phases: second constraint
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NS are bound by gravity NOT by the strong force

NS satisfy the Tolman-Oppenheimer-Volkoff equation GR extension of 
Newtonian gravity: vesc/c ≈ 1/2

3

FIG. 1 Schematic structure of a neutron star. The outer layer
is a solid ionic crust supported by electron degeneracy pres-
sure. Neutrons begin to leak out of ions (nuclei) at densities
⇠ 4⇥ 1011 g/cm3 (the neutron drip density, which separates
inner from outer crust), where neutron degeneracy also starts
to play a role. At densities ⇠ 2 ⇥ 1014 g/cm3, the nuclei
dissolve completely. This marks the crust-core boundary. In
the core, densities reach several times the nuclear saturation
density ⇢sat = 2.8⇥ 1014 g/cm3 (see text).

sity matter is therefore of major importance to nuclear
physics. However it is also critical to astrophysics. The
dense matter EOS is clearly central to understanding the
powerful, violent, and enigmatic objects that are neutron
stars. However, neutron star/neutron star and neutron
star/black hole binary inspiral and merger, prime sources
of gravitational waves and the likely engines of short
gamma-ray bursts (Nakar, 2007), also depend sensitively
on the EOS (Shibata and Taniguchi, 2011; Faber and
Rasio, 2012; Bauswein et al., 2012; Lackey et al., 2012;
Takami et al., 2014). The EOS a↵ects merger dynam-
ics, black hole formation timescales, the precise gravita-
tional wave and neutrino signals, any associated mass loss
and r-process nucleosynthesis, and the attendant gamma-
ray bursts and optical flashes (Metzger et al., 2010; Ho-
tokezaka et al., 2011; Rosswog, 2015; Kumar and Zhang,
2015). The EOS of dense matter is also vital to under-
standing core collapse supernova explosions and their as-
sociated gravitational wave and neutrino emission (Janka
et al., 2007)1.

1 Note that whilst most neutron stars, even during the binary in-
spiral phase, can be described by the cold EOS that is the focus of
this Colloquium (see Section I.C), temperature corrections must
be applied when describing either newborn neutron stars in the
immediate aftermath of a supernova, or the hot di↵erentially
rotating remnants that may survive for a short period of time
following a compact object merger. The cold and hot EOS must
of course connect and be consistent with one another.

B. The nature of matter: major open questions

The properties of neutron stars, like those of atomic
nuclei, depend crucially on the interactions between pro-
tons and neutrons (nucleons) governed by the strong
force. This is evident from the seminal work of Op-
penheimer and Volko↵ (Oppenheimer and Volko↵, 1939),
which showed that the maximal mass of neutron stars
consisting of non-interacting neutrons is 0.7 M�. To sta-
bilize heavier neutron stars, as realized in nature, requires
repulsive interactions between nucleons, which set in with
increasing density. At low energies, and thus low densi-
ties, the interactions between nucleons are attractive, as
they have to be to bind neutrons and protons into nuclei.
However, to prevent nuclei from collapsing, repulsive two-
nucleon and three-nucleon interactions set in at higher
momenta and densities. Because neutron stars reach den-
sities exceeding those in atomic nuclei, this makes them
particularly sensitive to many-body forces (see, for exam-
ple, Akmal et al., 1998), and recently it was shown that
the dominant uncertainty at nuclear densities is due to
three-nucleon forces (Hebeler et al., 2010; Gandolfi et al.,
2012)
At low energies, e↵ective field theories based on QCD

provide a systematic basis for nuclear forces (Epelbaum
et al., 2009), which make unique predictions for many-
body forces (Hammer et al., 2013) and neutron-rich
matter (Tolos et al., 2008; Hebeler and Schwenk, 2014;
Hebeler et al., 2015). While two-nucleon interactions are
well constrained, three-nucleon forces are a frontier in
nuclear physics, especially for neutron-rich nuclei (see,
for example, Wienholtz et al., 2013). Such exotic nuclei
are the focus of present and upcoming laboratory exper-
iments. Neutron star observations probe the same nu-
clear forces at extremes of density and neutron richness.
In addition, to e↵ective field theories, there are nuclear
potential models, such as the Argonne two-nucleon and
Urbana/Illinois three-nucleon potentials, which are fit to
two-body scattering data and light nuclei (Gandolfi et al.,
2014; Carlson et al., 2014).
At high densities, neutron stars may be a↵ected by ex-

otic states of matter. This regime is not accessible to first
principle QCD calculations due to the fermion sign prob-
lem (see, for example, the discussions in Hands, 2007;
Miller, 2013). Therefore, at present, one has to resort
to models, and experiment and observation are vital to
test theories and drive progress. In addition, recently,
perturbative QCD calculations have been performed at
very high densities (above 10 GeV/fm3, ⇠ 64⇢sat), and
used to interpolate to the EOS at low densities (Kurkela
et al., 2014).
For symmetric matter (with an equal number of neu-

trons and protons) at the nuclear saturation density
⇢sat = 2.8 ⇥ 1014 g/cm3 (the central density in very
large nuclei when the Coulomb interaction is neglected)
there is a range of experimental constraints. This in-
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Only Physics that the TOV equation is sensitive to: Equation of State
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M-R curve and EOS

M-R curve and NS matter EOS has 1 to 1 correspondence

TOV(Tolman-Oppenheimer-Volkoff) equation
=GR Hydrostatic Eq.
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Judge

Observation

…to infinity and beyond!

NS are bound by gravity NOT by the strong force

NS satisfy the Tolman-Oppenheimer-Volkoff equation (vesc/c ≈ 1/2)

Increase from 0.7 to 2 MSun transfer 
ownership to Nuclear Physics

Status After GW170817: The start of a golden era

Tantalizing Possibility
• Laboratory Experiments suggest large neutron radii for Pb 
• Gravitational Waves suggest small stellar radii 
• Electromagnetic Observations suggest large stellar masses 

Exciting possibility: If all are confirmed, this tension may be evidence of a 
softening/stiffening of the EOS (phase transition?)
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Neutron Stars as Nuclear Physics Gold Mines
Neutron Stars are the remnants of massive stellar explosions

Are bound by gravity NOT by the strong force
Satisfy the Tolman-Oppenheimer-Volkoff equation (vesc/c⇠1/2)

Only Physics sensitive to: Equation of state of neutron-rich matter
EOS must span about 11 orders of magnitude in baryon density

Increase from 0.7!2M� must be explained by Nuclear Physics!

common feature of models that include the appearance of ‘exotic’
hadronic matter such as hyperons4,5 or kaon condensates3 at densities
of a few times the nuclear saturation density (ns), for example models
GS1 and GM3 in Fig. 3. Almost all such EOSs are ruled out by our
results. Our mass measurement does not rule out condensed quark
matter as a component of the neutron star interior6,21, but it strongly
constrains quark matter model parameters12. For the range of allowed
EOS lines presented in Fig. 3, typical values for the physical parameters
of J1614-2230 are a central baryondensity of between 2ns and 5ns and a
radius of between 11 and 15 km, which is only 2–3 times the
Schwarzschild radius for a 1.97M[ star. It has been proposed that
the Tolman VII EOS-independent analytic solution of Einstein’s
equations marks an upper limit on the ultimate density of observable
cold matter22. If this argument is correct, it follows that our mass mea-
surement sets an upper limit on this maximum density of
(3.746 0.15)3 1015 g cm23, or ,10ns.
Evolutionary models resulting in companion masses.0.4M[ gen-

erally predict that the neutron star accretes only a few hundredths of a
solar mass of material, and result in a mildly recycled pulsar23, that is
one with a spin period.8ms. A few models resulting in orbital para-
meters similar to those of J1614-223023,24 predict that the neutron star
could accrete up to 0.2M[, which is still significantly less than the
>0.6M[ needed to bring a neutron star formed at 1.4M[ up to the
observed mass of J1614-2230. A possible explanation is that some
neutron stars are formed massive (,1.9M[). Alternatively, the trans-
fer of mass from the companion may be more efficient than current
models predict. This suggests that systems with shorter initial orbital
periods and lower companion masses—those that produce the vast
majority of the fully recycled millisecond pulsar population23—may
experience even greater amounts of mass transfer. In either case, our
mass measurement for J1614-2230 suggests that many other milli-
second pulsars may also have masses much greater than 1.4M[.
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range from 1 to 2 solar masses M§ and their radii range from 10 to 14 km [7]. Our
knowledge of the properties of such systems relies on theoretical models. One if not the
main ingredient needed to calculate the structure of neutron stars is the equation of state
of nuclear matter (EOSNM).

This equation that links the density to the energy of nuclear matter governs the
properties of systems in an extremely wide range of sizes, from microscopic nuclei (R ≥

10≠15 m) to macroscopic objects such as neutron stars (R ≥ 104 m). For this reason, it
plays an essential role in our understanding of the links that exist between phenomena
observed in laboratory experiments which probe the properties of exotic nuclei, nuclear
structure, heavy ion collisions, etc. and phenomena of astrophysical interest such as
neutron stars cooling and their structure, supernovae, binary mergers, etc. [8, 9, 10].
Because the scope of this very elegant equation a�ects the nuclear structure, nuclear
reactions as well as nuclear astrophysics, it is easy to understand why the knowledge of
its details is so crucial to nuclear physics in general.

In order to better interpret the di�erent terms of the EOSNM, it is insightful to start
from the Bethe-Weizsäcker equation (2). When considering this equation for infinite
nuclear matter in its thermodynamic limit (hence for A and the volume going to infinity
while keeping the density of the system constant), the energy per nucleon reads (when
neglecting the Coulomb force that would make the system unstable)

≠B(Z, N)
A

= Á0 + J–2 + . . . (5)

with the standrad notation Á0 = ≠aV and J = aA and where we remind that – =
(N ≠ Z)/A is the neutron-proton asymmetry. When allowing for density fluctuations,
this expression is usually written in the following compact form

E(fl, –) = E(fl, – = 0) + S(fl)–2 + O(–4) (6)

where we have defined the sum of the neutron and proton densities fl = flN + flZ as the
nuclear density and we have redefined the neutron-proton asymmetry as – = (flN ≠flZ)/fl.
Here, E(fl, – = 0) is the energy of symmetric nuclear matter (Á0 at saturation fl = fl0) and
S(fl) is what we usually define as the symmetry energy (J at saturation). It represents
approximately the energy necessary to convert symmetric nuclear matter (– = 0) into
pure neutron matter (– = 1). Decades of studies starting from the incompressible nuclear
droplet model have rather well constrained the energy of symmetric matter. However, the
knowledge of the symmetry energy and more particularly its density dependence, which
makes the link between all the di�erent nuclear physics fields, is still elusive. In the recent
years, much e�ort has been devoted to the study of this fundamental quantity [8, 9, 10]
and more particularly on its slope at saturation density which as the first order expansion
of S(fl), captures most of its density dependence around fl0. This slope (usually denoted
by L) has important implications on the size of (asymmetric) heavy nuclei and more
particularly on the thickness of their neutron skin (see Eq. (4)).

This can be qualitatively understood. In a nucleus, L quantifies the di�erence between
the symmetry energy at the core (which is at saturation density) and at its surface (where
the density is lower). While surface tension tends to push the excess neutrons inside the
core to have a compact system, the symmetry energy term favours an equal number of
protons and neutrons at saturation density and thus pushes these excess neutrons from
the high-density core towards peripheral regions of the nucleus, where the density is lower.
If L is large, the balance goes heavily in favour of the symmetry energy and the excess

4

Equation Of State
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slope parameter

curvature parameter

…

The symmetry energy

Bethe-Weizsäcker: incompressible quantum liquid-drop binding energy

B(Z,N) = aV A� aSA
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+ . . .

In the limit where volume V and A ! 1 but A/V = ⇢0 constant
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↵ neutron-proton asymmetry.

Incompressible ! fails to reproduce response to density fluctuations
) Equation of state (EOS) of asymmetric matter

E(⇢,↵) = E(⇢,↵ = 0) + S(⇢) ↵2 + . . .
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does not. Then, we have to conclude that a 3% accuracy in
APV sets modest constraints on L, implying that some of
the expectations that this measurement will constrain L
precisely may have to be revised to some extent. To narrow
down L, though demanding more experimental effort, a
!1% measurement of APV should be sought ultimately in
PREX. Our approach can support it to yield a new accuracy
near !!rnp ! 0:02 fm and !L! 10 MeV, well below any
previous constraint. Moreover, PREX is unique in that the
central value of !rnp and L follows from a probe largely
free of strong force uncertainties.

In summary, PREX ought to be instrumental to pave the
way for electroweak studies of neutron densities in heavy
nuclei [9,10,26]. To accurately extract the neutron radius
and skin of 208Pb from the experiment requires a precise
connection between the parity-violating asymmetry APV

and these properties. We investigated parity-violating elec-
tron scattering in nuclear models constrained by available
laboratory data to support this extraction without specific
assumptions on the shape of the nucleon densities. We
demonstrated a linear correlation, universal in the mean
field framework, between APV and!rnp that has very small
scatter. Because of its high quality, it will not spoil the
experimental accuracy even in improved measurements of
APV. With a 1% measurement of APV it can allow one to
constrain the slope L of the symmetry energy to near a
novel 10 MeV level. A mostly model-independent deter-
mination of !rnp of 208Pb and L should have enduring
impact on a variety of fields, including atomic parity
nonconservation and low-energy tests of the standard
model [8,9,32].
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the RHF-PK and PC-PK models, and K. Kumar for infor-
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The stairway to heaven 
(or the highway to hell, depending on your level of optimism)
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Coherent ⇡0
photoproduction on

208
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[F. Colomer, PhD (2020) & arXiv :2204.13395 (2022)]

Use different nucleonic densities

I São Paulo [Chamon et al. PRC 66, 014610 (2002)]

I FSU calculations [Todd-Rutel & Piekarewicz, PRL 95, 122501 (2005)]

with different neutron skins

I São Paulo : Rskin = 0.101 fm

I FSU : Rskin 2 [0.176, 0.286] fm

PWIA : in fair agreement with data

No sensitivity to neutron-skin thickness 15 / 17

[0.176,0.286] fm
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Non-PV e-scattering
Electron scattering γ exchange provides Rp through nucleus FFs

PV e-scattering
Electron also exchange Z, which is parity violating
Primarily couples to neutron
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PVES

PV-Asymmetry

‣ External-beam mode for 
high polarisation (P2)

…. need a few N=1018 electrons!
… close to 1011 electrons/s

‣ Beam current 150 µA
‣ Polarisation > 85%
‣ High precision polarimetry

…we call it: 
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PV-Asymmetry …. need a few N=1018 electrons!
… close to 1011 electrons/s

…we call it: 

J. Piekarewicz et al. Physics Today 72, 7, 30 (2019)
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from outer space to deep inside
The Nuclear Equation of State Density Ladder

Main Sequence 
Fitting

Cepheid Variables

Stellar Parallax

WD Supernovae

Hubble’s Law

Cosmic Distance Ladder Nuclear EOS Ladder

PVES; IVGDR

De
ns

ity

~ (0.5-1.5)r
0

~ (1.0-2.5)r
0

~ (2.0-4.0)

~ (> 3.0)

r
0

r
0

ultimate determination of the neutron-skin 
thickness of 208Pb 

(some people call it „P2“)

P2:
measurement of the weak mixing angle:
10000 hours (= 417 days)
measurement of the weak charge of 12C
2500 hours (= 105 days)

HIC; Pulse Pro!le 

Pulse Pro!le; GWs

Pulsar Timing; GW

Di
st
an

ce

Cosmic Distance Ladder 
 

The cosmic ladder has “rungs” of objects 
with certain properties that let astronomers 

confidently measure their distance. 
Jumping to each subsequent rung relies on 

methods for measuring objects that are 
ever farther away, the next step often 

piggybacking on the previous one

Nuclear EOS Density Ladder 
 

The EOS ladder has “rungs” of objects with 
certain properties that let scientists 

confidently measure the EOS. Jumping to 
each subsequent rung relies on methods 

for measuring objects that are ever denser, 
the next step often piggybacking on the 

previous one

Cosmic Distance LadderStatus After GW170817: The start of a golden era

Tantalizing Possibility
• Laboratory Experiments suggest large neutron radii for Pb 
• Gravitational Waves suggest small stellar radii 
• Electromagnetic Observations suggest large stellar masses 

Exciting possibility: If all are confirmed, this tension may be evidence of a 
softening/stiffening of the EOS (phase transition?)
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…per astra da astra ….

… per aspera ad astra …



…per astra da astra ….

The Good…

… per aspera ad astra …

…there is a way of bridging Earth and heaven…



…per astra da astra ….

The Good…

…the bad…

… per aspera ad astra …



…per astra da astra ….

The Good…

…the bad…

… per aspera ad astra …

“Wen Gott strafen will, dem 
erfüllt er seine Wünsche”

…also new data for the proton 
crisis, search for exotic particles, 
reactions for astrophysics …


