Physics Perspectives for FFN with Proton Beams from SIS100

Jim Ritman

2nd FAIR/GSI RED retreat

The first of

July 2023

Physics with Protons in FS+ as Seen by FFN

Jim Ritman

2nd FAIR/GSI RED retreat

July 2023

Strangeness Physics Aspects at SIS100

- Hyperon (Y) spectroscopy, focus on line-shape for |S|=1,2,3 to reveal their nature
- N* spectroscopy and coupling to strangeness, e.g. $N^* \rightarrow \Xi K K$ •
- YN, YY interactions in exclusive pp reactions and via Femtoscopy
- Hyperon structure, e.g. $Y^* \rightarrow Y \ell^+ \ell^-$, precision eTFF studies
- Low-energy constants in chiral SU(3) via axial-vector transition form factors, e.g. $\Xi^* \rightarrow \Xi \pi \gamma$

Jim Ritman

Strangeness Physics Aspects at SIS100

- Hyperon (Y) spectroscopy, focus on line-shape for |S|=1,2,3 to reveal their nature
- N* spectroscopy and coupling to strangeness, e.g. $N^* \rightarrow \Xi K K$
- YN, YY interactions in exclusive pp reactions and via Femtoscopy
- Hyperon structure, e.g. $Y^* \rightarrow Y \ell^+ \ell^-$, precision eTFF studies
- Low-energy constants in chiral SU(3) via axial-vector transition form factors, e.g. $\Xi^* \rightarrow \Xi \pi \gamma$

Charm Physics Aspects at SIS100

- Charm-N interactions: SU(4) dynamics
- Intrinsic charm component of the nucleon
- Mass structure of the proton

π⁰ D*⁰

2nd FAIR/GSI RED retreat

Charm Physics Aspects at SIS100

- Charm-N interactions: SU(4) dynamics
- Intrinsic charm component of the nucleon
- Mass structure of the proton

Duran et al., Nature 615, 813 (2023), "Determining the gluon gravitational form factor of the proton"

Jim Ritman

2nd FAIR/GSI RED retreat

July 2023

Fast-Simulation: $pp \rightarrow ppJ/\psi$ CBM Acceptance

Potential Contributions of FFN to CBM

Gas system for the TRD Detector

TRD system

- Volume: 1.36 m³ with 4 layers
- Modules: 216 ٠
- Gas mixture: Xe/CO2 (85/15)
- Mechanical limit of 1 mbar gas overpressure in each chamber ٠
- Stringent limits on overpressure, gas purity, leak tightness
- Gas system ٠
 - Closed-loop and recirculating gas
 - Overpressure regulation 0.7 ± 0.3 mbar
 - 5 overpressure regulation lines at different TRD heights ٠
 - Oxygen and moisture sensor and filtering
 - Xe recovery station by removing accumulated N₂
 - Software development for gas control system
 - Interface to slow control system for experiment

Peter Wintz & PhD

Jim Ritman

Light Readout and Calorimeter for the FSD

Determination of:

- Collision centrality multiplicity of projectile spectators

 → impact parameter
- Collective flow spectators position and energy → reaction plane orientation
- Exclusive events → increase acceptance to low Q
 - \rightarrow low-t elastic scattering

FSD concept : segmented scintillator

Modules: Small: 4x4 cm² Medium: 8x8 cm² Large: 16x16 cm²

neutron detector

Ø 126 cm 84 modules, I = 45 cm plastic scintillator n-detection efficiency \approx 30 %

Dieter Grzonka & PhD

Intermediate Program of FFN

- FAIR-PhaseO Experiments with p and π Beams at HADES
- PANDA system Tests in Cave-C

FAIR-PhaseO with p and π Beams at HADES

- $\pi\pi N$, ωn , ηn , $k^0 \Lambda$, K Σ , ...
- Sparse database (PWA)
- Resolve baryon structures: Double resonances, Cascade decays, ηn couplings

Cold matter studies (C, Ag targets)

- $\bullet~\omega$ absorption, ρ spectral function
- Strangeness production

Pion and Proton Beam in 2025-2028

Operation of the STS1 & iTOF

Ahmed Foda

Extract SDMEs

PANDA System tests in Cave-C

- Installation of some PANDA (sub-)systems in Cave-C under consideration
- Proton beam up to T=4.5 GeV needed for the tests
- FFN could provide:
 - 1 sector of the STT
 - KOALA recoil detector to confirm LMD performance

2nd FAIR/GSI RED retreat

Summary

- FFN is investigating a pivot to proton induced reactions at SIS100
 - Charm and multistrange exclusive events at CBM
 - Hardware/software contributions towards FS+
- FAIR-PhaseO experiments with p and π beams at HADES
- Detector tests at Cave-C