

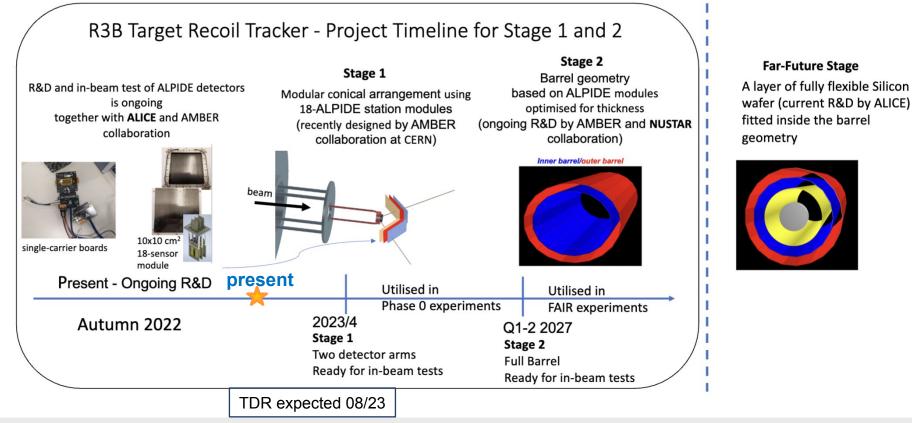
Critical Path towards NUSTAR ES/FS

HE Cave ready	 Completion of High-Energy Cave TBI Completion of relevant radiation safety infrastructure Operating acceptance (Abnahme) awarded 	
S-FRS ready to deliver beam	 S-FRS beam delivery (M12) Required SIS-18/SIS-100 beam parameters reached 	
Sub-collaboration specific infrastructure	 Platforms for detector subsystems at HE Branch focal planes Experiment-specific media and other infrastructure 	NUSTAR Early and First Science
Detector systems ready	 Demonstrated readiness of NUSTAR setups In-use setups commissioned during Phase-0 	
Expert resources available	• Expert resources (local + external) from collaboration required for installation and commissioning phases	

Critical Path towards NUSTAR ES/FS

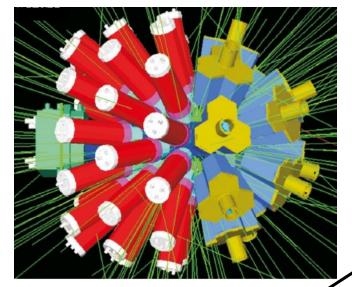
HE Cave ready	 Completion of High-Energy Cave TBI Completion of relevant radiation safety infrastructure Operating acceptance (Abnahme) awarded 	
S-FRS ready to deliver beam	 S-FRS beam delivery (M12) Required SIS-18/SIS-100 beam parameters reached 	Risk : beam parameters not achieved
Sub-collaboration specific infrastructure	 Platforms for detector subsystems at HE Branch focal planes Experiment-specific media and other infrastructure 	
Detector systems ready	 Demonstrated readiness of NUSTAR setups In-use setups commissioned during Phase-0 	Low-impact scientific output
Expert resources available	• Expert resources (local + external) from collaboration required for installation and commissioning phases	

Critical Path towards NUSTAR ES/FS

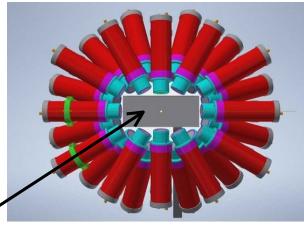


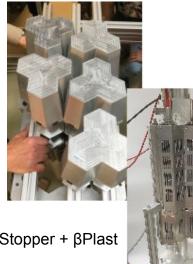
HE Cave ready	 Completion of High-Energy Cave TBI Completion of relevant radiation safety infrastructure Operating acceptance (Abnahme) awarded 	
S-FRS ready to deliver beam	 S-FRS beam delivery (M12) Required SIS-18/SIS-100 beam parameters reached 	
Sub-collaboration specific infrastructure	 Platforms for detector subsystems at HE Branch focal planes Experiment-specific media and other infrastructure 	Risk : dependency on Common Fund (CF) established through NUSTAR MoU. Risk of non or late availability of CF. Risk of non-
Detector systems ready	 Demonstrated readiness of NUSTAR setups In-use setups commissioned during Phase-0 	payment from communities no longer served in ES/FS
Expert resources available	• Expert resources (local + external) from collaboration required for installation and commissioning phases	Mitigation: Bilateral discussions with

Mitigation: Bilateral discussions with funding agencies *Buffer:* No critical components with long lead times foreseen


Technical developments: R³B

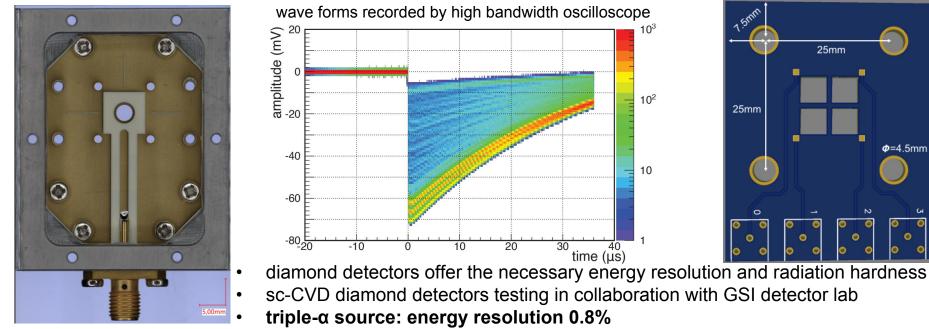
Technical developments: HISPEC/DESPEC





New DESPEC hybrid γ-ray array

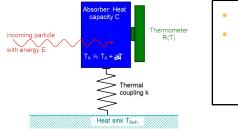
12 DEGAS HPGes for high-precision spectroscopy
 + 36 FATIMA LaBr₃s for fast-timing measurements


- Compatible with 'wide' 24x8-cm² AIDA Active Stopper + βPlast fast scintillators
- Improved efficiency compared with 2021 setup
- Plans for front-end improvement of TAMEX electronics for lowenergy γ rays

Technical developments: HISPEC/DESPEC

d=4.5mm

LISA: LIfetime measurements with Solid Active targets



- energy resolution sufficient for identification of one-proton removal events
- design and construction of 2×2×2 prototype
- ongoing optimization of charge sensitive pre-amplifiers and FEBEX4 DAQ system

Technical developments: Super-FRS EC

Micro calorimeters for PID

- Test at the FRS
- Design of an array with 4x4 crystals (active detector area 40x40 mm²)

Micro vertex detector for WASA@FRS

Test with off-line sources and with stable-ion beams: efficiency, tracking capability, IP measurement of nucleusnucleus collisions

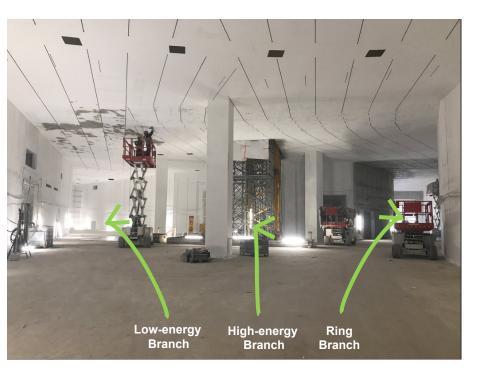
Cryogenic Stopping Cell

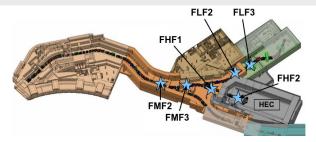
- GSI-FAIR In-Kind Contract signed
- First procurements completed, construction started
- Construction / assembly will be continued in 2024

Tracking detectors for EXPERT

Tests with p-beams at COSY Jülich

- FOOT micro-strip detectors (combined R3B activity)
- ALPIDE tracking station (combined R3B activity)
- GADAST readout system


Tracking station with 18 ALPIDE detectors


Technical developments: Super-FRS EC Helium Recovery Unit (HRU) for Super-FRS Cryogenic Stopping Cell Juclear Physic UNIVERSITY OF IYVÄSKYLÄ

- Recovers >98% of (precious!) buffer gas He 6.0; purifies buffer gas at each cycle
- Final design report accepted; purchasing under way; test and assembly of first components will start in next weeks
- GSI engineering run in Q4 2023: test with beams

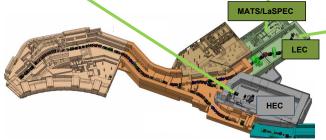
On-site construction update - April 2023

FHF1

FLF2

On-site construction update - April 2023

High-energy Cave



MATS/LaSPEC

Status of TDRs

Sub-system	TDR #	name	status	
NUSTAR	2 01	LEB infrastructure	approved	
LEB infrastructure	2 02	Cryogenic Stopping cell	approved	
HISPEC/DESPEC	2_04	HISPEC/DESPEC infrastructure	approved	_11/2025
NUSTAR	2 05	NUSTAR DAQ	approved	
HISPEC/DESPEC	2 07	Active target (India)	expected	/
HISPEC/DESPEC	2 08	HYDE	expected	- 44/0001
HISPEC/DESPEC	2 09	LYCCA	approved	
HISPEC/DESPEC	2 10	Plunger	approved	
HISPEC/DESPEC	2 11	AIDA	approved	
HISPEC/DESPEC	2 12	DEGAS	approved	
HISPEC/DESPEC	2 13	FATIMA	approved	
HISPEC/DESPEC	2_14	BELEN	approved	
HISPEC/DESPEC	2_15	MONSTER	approved	
HISPEC/DESPEC	2_16	NEDA	approved	
HISPEC/DESPEC	2 17	DTAS	approved	
HISPEC/DESPEC	2 18	gSPEC	expected	<u> </u>
NUSTAR	2_19	MATS/LaSpec	approved	
R3B	2 21	GLAD	approved	
R3B	2 22	R3B tracking	approved	
R3B	2_24	CALIFA barrel	approved	
R3B	2 25	CALIFA fwd endcap	approved	
R3B	2 26	Si tracker	expected	
R3B	2_27	NeuLAND	approved	
R3B	2_28	R3B vacuum	approved	
R3B	2_29	R3B infrastructure	approved	
R3B	2_30	R3B spectrometer	expected	
R3B	2_32	ACTAF	approved	
ILIMA	2_33	ILIMA Schottky	approved	
ILIMA	2_34	ILIMA TOF detectors	approved	
ILIMA	2_35	ILIMA Heavy ion detector	approved	
HISPEC/DESPEC	2_37	Slowed down beam setup	expected	
Super-FRS Experiment	2_38	EXPERT	approved	
Super-FRS Experiment	2_39	Super-FRS Exp infrastructure	approved	07/202
Super-FRS Experiment	2_40	Liquid hydrogen target	expected	
Super-FRS Experiment	2_41	(Ice target and tensor force)	expected	08/202
Super-FRS Experiment	2_42	(future WASA)	expected	
R3B	2 43	HYDRA	expected	
*Funding ava	ilabl	alsocured		07/2024

27	approved			
0	submitted			
3	expected			
7	beyond "Day one"			

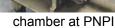
Expected TDRs:

- gSPEC:
 - Grant request submitted
- Si tracker:
 - Funding granted by STFC
 - Re-design complete
 - TDR expected 08/23
- Ice-target and tensor force detection:
 - Funding available
 - TDR expected 08/23

Status of re-procurement for Russian in-kind

Active target ACTAF2

Status: nothing delivered


- ACTAF1 will be combined with parts of ACTAF2
- Electronics from ACTAF2 might need revision
- Revised vacuum and gas systems
- Support and alignment systems required
- 226 kEUR (2005) requested for full re-procurement

NeuLAND HV

Status: all modules and control boards delivered

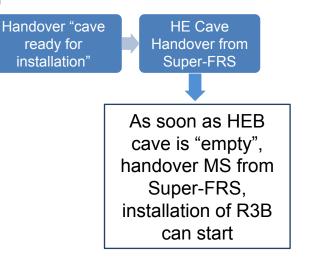
- Quality issue repair required
- **GSI EEL reverse engineering**
- 31.4 kEUR (2005) requested for repair

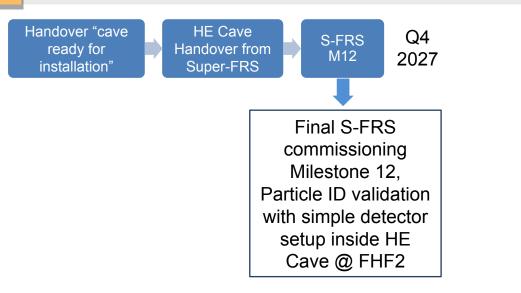
Proton Arm Spectrometer (PAS)

Status: nothing delivered

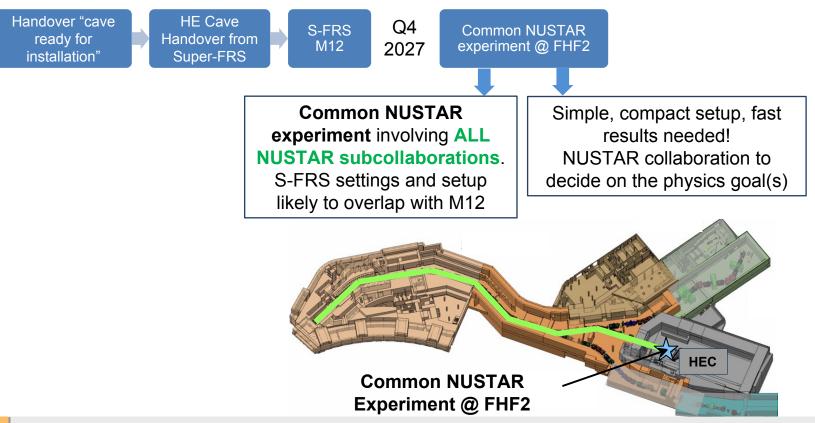
- New design and (likely) TDR needed
- R3B investigating technical solutions
- 587 kEUR (2005) requested for full re-procurement

straw tubes at PNPI


gas system for PAS at PNPI


Handover "cave ready for installation"

As soon as building is ready for installation, some infrastructure items can be installed (limited due to work on Super-FRS)



Handover "cave ready for installation" HE Cave Handover from Super-FRS

Q4 2027

S-FRS

M12

Common NUSTAR experiment @ FHF2 NUSTAR Early Science

HISPEC/DESPEC

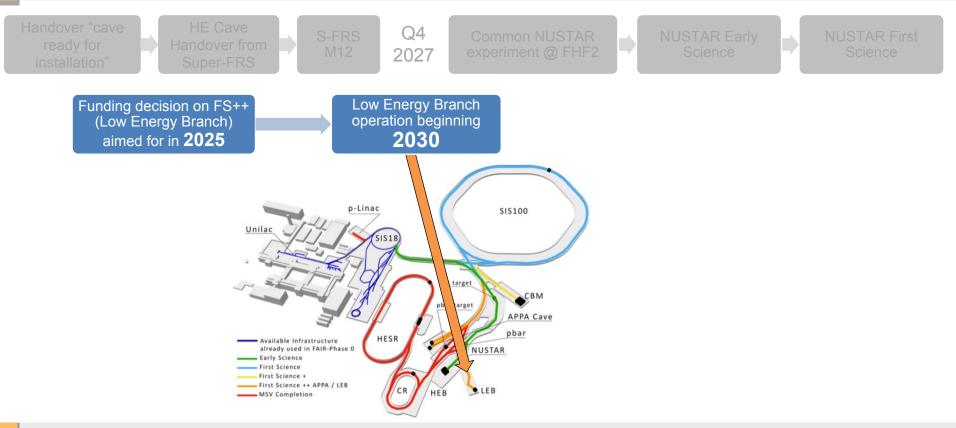
Super-FRS EC

Super-FRS EC

NUSTAR First Science

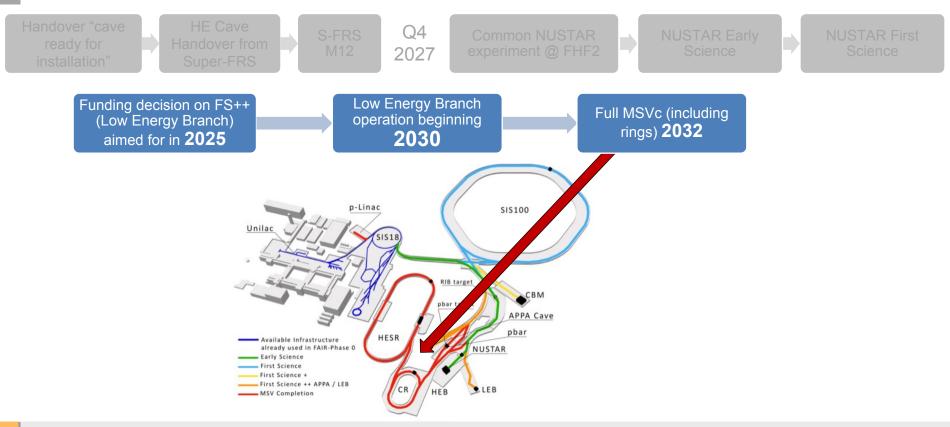
R³B

NUSTAR ES and FS:

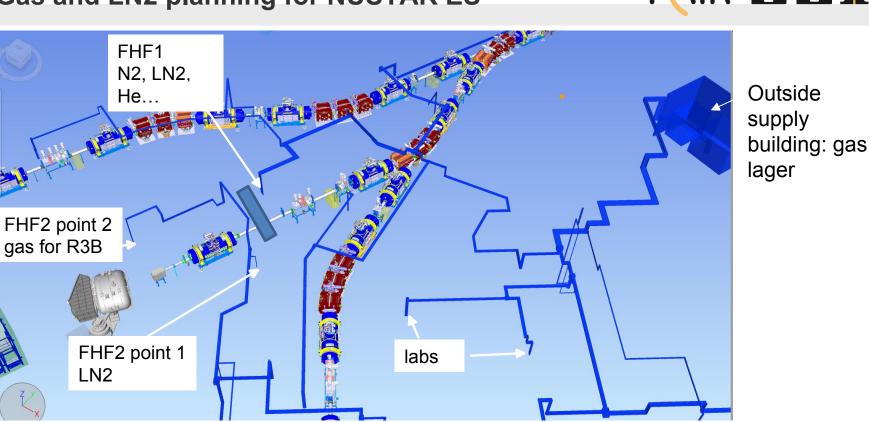

individual sub-collaborations (Super-FRS EC, partial HISPEC/DESPEC and R3B) running PAC-approved experiments at S-FRS focal planes, continuation of the SHE program at UNILAC and ILIMA at the ESR and CRYRING

Detailed installation timelines to be developed and refined in LCM workshops

New "NUSTAR Technical Integration for ES" team planned



NUSTAR Strategy beyond FS (2028+)



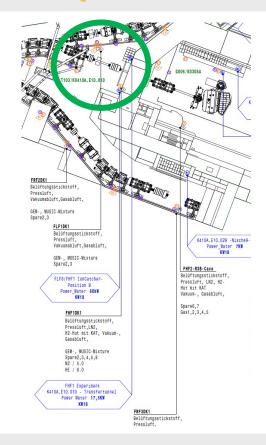
NUSTAR Strategy beyond FS (2028+)

Gas and LN2 planning for NUSTAR ES

Slide: S. Pietri

magnets of MSV are shown together with magnets of ES for clarity

Infrastructure at FHF1


- · FHF1 was always planned as Super-FRS focal plane for
 - high-intensity experiments
 - higher transmission
- Infrastructure planned since 2016+ for operation of Super-FRS EC Ion Catcher and gamma array at FHF1

LN2 Consumers NUSTAR

Position	Nr.	Location	Reqiured flow	Amount per day / week	Max allowed pressure at connection (bar)	Minimum require pressure at connection (bar)
R3B @FHF2	1	K0308A.E10.010 (G006)	300 l/h	2 m³/d	2	1,3
FHF1	2	2 K0410A.E10.010 (T103)	100 l/h	1 m³/d	2	1,3
LEB Cave @FLF3	(1)	B L0317A.E10.010 (G006B)	300 l/h	2 m³/d	2	1,3
LEB Cave @FLF6	4	L0317A.E10.010 (G006B)	100 l/h	1 m³/d	2	1,3
Vorb. SFRS	5	5 L0321A.E10.007 (G006A)	100 l/h	1 m³/d	2	1,3
MATS/LaSpec	6	5 L0317A.E10.020 (G006B)	200 l/h	1-4 times per week 100-200l	free flow, no fix connection	1,0
Vorb. R3B	7	L0321A.E15.008 (G006A)			-	
Vorb. Stopping C. / Ion C.	8	3 L0321A.E15.009 (G006A)			-	8- 1
Vorb. H/Dspec	9	L0321A.E30.008 (G006A)	100 l/h	1 m³/d	2	1,3
FMF2	10	0 K410A.E10.010		-	-	-

Bemerkung: Der Durchfluss von 300 l/h wird entweder an Position Nr.1 oder an Position Nr.3 benötigt - nie gleichzeitig an beiden. Stand: 07.02.2019

Slide: S. Pietri

NUSTAR input to the FAIR IT CDR (highlights)

Table 28: Storage Requirements (II — Processing).

User access Users should be able to access the GSI/FAIR computing resources via centrally managed Linux desktop PCs. The general availability of such terminals has proven very valuable in the past, and it is a must for operation of the spectrometer at the center of the NUSTAR experiments (FRs and Super-FRS). Indeed a strong link exist between the online analysis from detectors used in the experiment and the machine tuning of the spectrometers. To achieve this reliably standardized computer for operation are needed.

Table 26: Compute Requirements (in HEPSpec06).					
	Early science configuration	Full MSV configuration			
at the experiment	12,000	24,000			
•	0	0			
	0	0			
	0	0			
anywhere in facility	10,000	10,000			
at Green cube	120,000	300,000			

		Early science configuration	Full MSV configuration
	TB/year	5,000	5,000
Raw Data	#years	5	5
	Bandwidth (MB/s)	10,000	10,000
	TB/year	500	500
Simulation	#years	5	5
	Bandwidth (MB/s)	1000	1000
	TB/year	1,250	1,250
Derived data	#years	5	5
	Bandwidth (MB/s)	10,000	10,000

Table 27: Storage Requirements (I — Data Taking).

		Early science configuration	Full MSV configuration
Experiment to	#fibers	192	192
GreenCube/RZ1	Bandwidth (MB/s)	500	500
Bandwidth to permanent storage	Peak (MB/s)	1000	1000
Dandwidth to permanent storage	Average (MB/s)	500	500
Permanent storage/year	5,000	5,000	
Additional disk storage	500	500	

Personnel resources

- Personnel requirements for all FAIR pillars were collected and presented to the <u>Operating</u> <u>Costs</u> <u>Working</u> <u>Group</u>
 - Exp. Core (FTEs needed to operate experiments)
 - Exp. Operation (consumables related to operation of equipment)
 - Research (FTEs for experimental output, core group on site)
- A further iteration with updated estimates was made
 - Increased request compared to 2014
 - MSVc and IO considered
 - 40 fellows and associates included
- Outcome of the "Staging Review of the FAIR Project"
- Current NUSTAR personnel: 41 FTE
- Updated detailed request considering new staging and realistic perspective urgently needed. NUSTAR operation to begin in 2027. Request expected to be presented to AFC Q2 2024

Installation Planning – NUSTAR Status

~	67	▲■	0	2.15.1.1.	NUSTAR - Installation LEB. HEB. (CR)	
>	68		•	2.15.1.1	Installations in Low Energy Cave for Early Science new	
>	75		•	2.15.1.1	High energy branch (HEB) updated	
>	372		0	2.15.1.1	LEB cave (L0317A/G006b) up to FLF3 - Installation and Comissioning without Beam	
>	437		0	2.15.1.1	LEB cave (L0317A/G006B) up to FLF6 - Installation and Comissioning without Beam	
>	586		0	2.15.1.1	Ring branch CR (manually set or linked to CR Plan)	
>	614		Θ	2.15.1.1.	MATS/LaSpec (L0317A/G006b) - Installation and Commissioning without Beam	

- Project rebaselining completed
- New block: operation of the high-energy branch requires installation of components in the low-energy Cave (e.g., cryo components, racks,...)
- **HEB block:** updated to include installation of Super-FRS EC, HISPEC/DESPEC and R3B

