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FIG. 1 Schematic relationships between the topics discussed in this Colloquium. The diagram emphasizes the close connections
between theory, computations (both computational science and data science as well as many elements from computer science)
and experiments.

and the synthesis of the elements in the Cosmos, see
Fig. 1. Experiments produce data volumes that range in
complexity and heterogeneity, thereby posing enormous
challenges to their design, their execution, and the sta-
tistical data analysis.

Theoretical modeling of nuclear properties is, in most
physical cases of interest, limited by the large amount of
degrees of freedom in quantum-mechanical calculations.
The analysis of experimental data and the theoretical
modeling of nuclear systems aims, as is the case in all
fields of physics, at uncovering the basic laws of motion
in order to make predictions and estimations, as well as
finding correlations and causations for strongly interact-
ing matter. The broad aims of nuclear physics as a field
correspond to a highly distributed scientific enterprise.
Experimental e↵orts utilize many laboratories worldwide,
each with unique operation, data acquisition, and anal-
ysis methods. Similarly, the scales of focus spanned in
theoretical nuclear physics lead to broad needs for algo-
rithmic methods and uncertainty quantification. These
e↵orts, utilizing arrays of data types across size and en-
ergy scales, create an ideal environment for applications
of ML methods.

II. MACHINE LEARNING FOR NUCLEAR PHYSICS IN
BROAD STROKES

Statistics, data science, and ML form important fields
of research in modern science. They describe how to
learn and make predictions from data, and enable the

extraction of key information about physical processes
and the underlying scientific laws based on large datasets.
As such, recent advances in ML capabilities are being
applied to advance scientific discoveries in the physical
sciences (Carleo et al., 2019; Deiana et al., 2021).

Ideally, ML represents the science of building models
to perform a task without the instructions being explic-
itly programmed. This approach introduces in practice
a hierarchy of mathematical operations that enable the
computer to learn complicated concepts by building them
out of simpler ones. In terms of a graphical representa-
tion, this can be visualized as a deep network of training
and learning operations, often just referred to as deep
learning (Goodfellow et al., 2016).

There exist many ML approaches; they are often split
into two main categories, supervised and unsupervised.
In supervised learning, training data are labeled and one
lets a specific ML algorithm learn and deduce patterns
in the datasets.

This allows one to make predictions about future
events and/or data not included in the training set. On
the other hand, unsupervised learning is a method for
finding patterns and relationship in datasets without any
prior knowledge of the system. Many researchers also op-
erate with a third category, dubbed reinforcement learn-
ing. This is a paradigm of learning inspired by behav-
ioral psychology, where actions are learned to maximize
reward. One may encounter reinforcement learning being
accompanied by supervised deep learning methods such
as deep ANN. Furthermore, what is often referred to as

What makes it so fascinating?
Computing at FAIR

•FAIR houses broad and divers physics communities 
from atomic to particle physics, from theory to 
experiment, and very internationally oriented. 

•Computational activities are very diverse: from 
notebooks to HPCs and HTCs, etc.. 

•New developments in hard- (GPU, ARM, QC,…), soft-
ware (ML/AI), in data processing (triggerless readouts) 
and management (F.A.I.R., federated infrastructures). 

•Computing support centrally organised & 
understaffed compared to HEP communities! 

•FAIR is not a smaller copy of CERN, more subtle.

Nuclei



The objective
…yes a conceptual computing design for FAIR…

• … focussed towards research IT, hence not enterprise IT!


• … with a clear and coherent vision for FAIR computing


• … supported by relevant stakeholders including you!


• … with a description of requirements based on best estimates


• … with commonly defined criteria 

• … FAIR players*: APPA,CBM,HADES,NUSTAR,PANDA,THEORY,BEAM


• … considering FAIR scenarios: FS(+) and MSV

*ALICE uses large fraction of computing resources & strong connections with 
scientific IT@GSI, but considered as “outside” activity, different funding scheme, etc. 



The process
…to derive to FAIR computing model

• Central = the input and advice of the 
research lines, data management, and GSI-IT 


• Collect info from FAIR Phase Zero


• Follow-up trends and strategies


• Participation EU communities, such as 
EOSC, NUPECC, JENA, …


• Regular bi-weekly meetings


• Deliver Conceptual Design Report

GSI IT:

-------

Mohammad Al-Turany - m.al-turany@gsi.de

Thorsten Kollegger - T.Kollegger@gsi.de


THEORY:

-------

Thomas Neff - t.neff@gsi.de


CBM:

----

Volker Friese - v.friese@gsi.de


HADES:

------

Jochen Markert - j.markert@gsi.de


PANDA:

------

Tobias Stockmanns - t.stockmanns@fz-juelich.de


APPA:

-----

Shahab Sanjari - s.sanjari@gsi.de 


NUSTAR:

-------

Haik Simon - H.Simon@gsi.de

Bastian Loeher - B.Loeher@gsi.de

Stephane Pietri - S.Pietri@gsi.de


BEAM PHYSICS:

-------------

Adrian Oeftiger - a.oeftiger@gsi.de


RESEARCH DATA MANAGEMENT:

-------------------------

Andrew Mistry - A.K.Mistry@gsi.de


COORDINATION:

-------------

Johan Messchendorp - j.messchendorp@gsi.de



Classification
..as an important input to computing model

• Computing (HEPSpec06) 
• Online & offline data processing

• Monte Carlo simulations

• Theoretical models and simulations


• Data storage (TB/year) 
• Raw data

• Derived data

• Simulation data


• Bandwidths (GB/s) 
• Data rates from experiment to GreenCube

• …to permanent storage

• Peak & average rates
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Simulation Simulations for CBM comprise two steps: first, a transport engine (GEANT3
/ GEANT4) is run on input events generated by a suitable generator (e.g., UrQMD), tak-
ing into account the detailed detector geometry and the magnetic field. The output of
this step (MC) are the simulated intersection points of particles with sensitive detector
elements and the corresponding energy deposits. Table 13 show the processing time and
MC event sizes for the GEANT3 transport simulation of minimum-bias Au+Au collisions
at pbeam = 12A GeV/c. The PSD was excluded from this evaluation since for this device,
a fast simulation with parametrised response will be introduced already on the MC level.
It should be noted that the size of the MC data was not yet optimised and can be expected
to shrink in future software versions.

Table 13: Average processing time (Intel E5-2680 v4 @ 2.40 GHz) and MC size per event
for the transport simulation (GEANT3) of minimum-bias Au+Au collisions at pbeam =
12A GeV/c

setup wall time Event size

hadron 0.6 s 140 kB
electron 1.8 s 250 kB
muon 1.3 s 140 kB

MC data serve as input for the detector response simulation (“digitisation”). This
step of simulation produces simulated raw data in the same format as experiment data,
i.e., as a time-stream of data not associated to events. It is considerably faster than the
transport simulation (about 0.3 s/event).

Rare signals will be subjected to transport simulations separately from the background
events and embedded at the digitisation stage. This means that the same transport
simulation of background events can be re-used for di↵erent physics purposes and also for
di↵erent digitisation conditions (e.g., interaction rates). Thus, MC data are usually saved
to file.

For large-scale simulations, we foresee digitisation and reconstruction of the simulated
raw data to be performed on-the-fly, either subjected directly to analysis or to the pro-
duction of AODs similar to those for real data.

From the point of view of memory consumption, simulation runs can be performed
independently on single cores; we currently thus do not see the need to use concurrency
features here.

2.3.3 Resource estimates: computing

Entry Cluster (category I.a) The number of nodes of the Entry Cluster will be
determined by bandwidth from and connectivity to the experiment. Our current estimate
is that about 100 nodes will be required for full CBM operation. These resources fall into
the category I.a of the FAIR computing model. In principle, these nodes are available for
general-purpose computing between CBM data-taking periods. However, the computing
capacities of the Entry Cluster can be neglected in comparison to that of the Compute
Cluster.

Compute Cluster (category II.b) The most compute-demanding software triggers
employed in CBM will be those involving full track reconstruction in the STS, e.g., triggers
on the decay topology of anti-hyperons or hyper-nuclei. Trigger on muon pairs can be, at
least at the first trigger level, derived from data of the most downstream MUCH stations
and do not require prior STS track reconstruction. It has been shown that a di-muon
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software trigger can be obtained at very high speed and thus with moderate compute
capacities. The demands for online computing are thus determined by decay topology
triggers, requiring STS, TOF and TRD information, the latter for the identification of
multiply-charged composites.

The estimate of the compute capacities needed for real-time-reconstruction and data
selection is based on the L1 track finding in the STS detector as the most compute-intensive
part. This was measured to be 8.5 ms per core and event on a Intel Xeon E7-4860 processor
(see section 2.3.1) for Au+Au collisions at pbeam = 25A GeV/c. We estimate that the
total reconstruction time, including cluster finding, hit finding and global tracking, is a
factor of three larger than the L1 time consumption, i.e. 25.5 ms. The di↵erence in beam
momentum (12A GeV/c instead of 25A GeV/c) amounts to a factor 1.5 in processing
speed, which gives 17 ms per event and core. The throughput on the 40-core-machine is
thus 2,350 events/s.

For the very similar machine Xeon E7-4870, a HepSpec06-calibration exists, yielding
654 in full parallel operation. Both machines di↵er only in the clock frequency (2.40 MHz
for E7-4870 versus 2.26 MHz for E7-4860) and, slightly, in the cache size. We assume that
the HepSpec06 number scales by the ratio of the clock frequency and is hence 616 for the
E7-4860 used for the L1 performance measurement.

In order to process the targeted 3.75 · 106 events per second in real-time, about 1,590
of the above mentioned computers are required (63,750 cores), which amounts to 979
kHepSpec06. These resources correspond to category II.b in the FAIR computing model.

Uncertainties: The derived number scales linearly with the sustained interaction rate
(3.75 · 106 / s). It depends on the assumption that a similar level of optimisation and
concurrency as achieved in L1 track finding can be established in all parts of the recon-
struction process. The results reported in were obtained under idealised conditions, e.g.,
no mis-alignment and no detector noise. It can be expected that the inclusion of such
e↵ects will deteriorate the performance. On the other hand, future improvements can be
expected in particular by vectorisation on larger registers. The requirement thus has to
be regarded as a current and preliminary estimate only.

O✏ine computing (category II.a) O✏ine compute resources will be used for simu-
lation, reconstruction of experiment and simulated data (production of AODs) and data
analysis.

The current CPU consumption for simulation with CBM is moderate in comparison to
LHC experiments (see Table 13). It is to be expected that the processing time will increase
in the future, triggered by more detailed description of detector geometries and by using
GEANT4 instead of the currently used GEANT3. For the estimate of the associated
compute resources, we assume a processing time of 3 s per event (Intel E5-2680 v4 @
2.40 GHz, 22 HepSpec06 / physical core) for transport simulations. The requirement to
simulate as many events as recorded by the experiment (see Table 15) leads to the compute
requirements shown in Table 14. It is assumed that the resources are used continuously
over the year (3.15 · 107 s).

The estimate for o✏ine computing other than simulation in CBM is, at the current
stage, di�cult. Experience from LHC experiments show that simulation is the most time-
consuming task for o✏ine computing. For instance, ALICE typically spend about 70%
of their total CPU usage for simulation. However, this ratio cannot be easily applied for
CBM since both simulation and reconstruction can be assumed to be much less CPU-
intensive than in ALICE. The data analysis, on the other hand, is not expected to scale
in the same way. We tentatively estimate that the reconstruction and analysis of both
experiment and simulated data will consume the same amount of CPU resources as the
simulation. The total requirement for o✏ine computing resources thus amounts to 1,000
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Table 19: Raw data rates from the experiment to the Green Cube

Setup Average interaction rate Data rate to GC

hadron 5 · 106 / s 244 GB/s

electron 1 · 105 / s 7 GB/s

muon 5 · 106 / s 140 GB/s

Taking into account an average utilisation factor of < 1 and a su�cient safety factor,
the current FLES design foresees about 120 optical fibres (Infiniband HDR) from the
experiment to the Green Cube.

Bandwidth to permanent storage Since for the hadron setup and the muon setup,
selective triggers reducing the raw data rate by factors of 100 or more will be applied,
the limiting case for the archival bandwidth is given by the electron setup, where no
physics trigger will be applied. The sustained data rate to storage is 5.5 GB/s. This
number refers to the average over the machine duty cycle, which will be established in the
Compute Cluster (see section 3.3.1). Since no reconstruction will be run online, variations
in the online processing time are estimated to be small, too.

Uncertainties: The number scales linearly with the average interaction rate (105 / s),
the machine duty cycle (75%) and the event raw data size (see Table 14).

Applying a contingency factor of 1.5, we require a peak bandwidth to permanent
storage of 8 GB/s.

Bandwidth to transient storage If the concept of delayed event filtering involving
transient disk storage is followed (see section 3.3.1), su�cient bandwidth to the storage
cluster must be foreseen. Relevant for this consideration is the sustained data rate from
the hadron setup after an online first-level data reduction by a factor of ten, which amounts
to 18.3 GB/s. It must be noted that in this concept, the filtering of data from transient
storage to permanent storage proceeds in parallel to the experiment and at the same speed,
such that a similar read bandwidth is necessary.

3.3.6 Summary

Based on the present knowledge on operation conditions, experiment design and data
processing concept, the CBM collaboration estimate to require for the operation of the
experiment at SIS-100 the resources summarised in Tables 20, 21 and 22.

Table 20: CBM Compute Requirements (in HEPSpec06)
Compute Class FS+ MSV

I.a 6,000 6,000
I.b 0 0
I.c 0 0
I.d 0 0
II.a 1,000,000 1,000,000
II.b 980,000 980,000
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Online computing

1 physical core  (Intel E5-2680v4@2.4GHz) ~22 HEPSpec06
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Table 21: CBM Storage Requirements (I —Data Taking)

FS+ MSV

Experiment to
GreenCube/RZ1

#fibers 120 120
Bandwidth (GB/s) 400 400

Bandwidth to permanent storage
Peak (GB/s) 8 8

Average (GB/s) 5.4 5.4
Permanent storage/year (TB/year) 18,000 18,000

Additional disk storage (TB) 11,000 11,000

Table 22: CBM Storage Requirements (II —Processing)

FS+ MSV

Raw Data
TB/year 18,000 18,000
#years 2 2

Bandwidth (MB/s) 0 0

Simulation
TB/year 9,000 9,000
#years 4 4

Bandwidth (MB/s) 0 0

Derived data
TB/year 4,000 4,000
#years 5 5

Bandwidth (MB/s) 0 0

3.4 HADES

Di↵erent operation scenarios have to be distinguished:

1. Data Taking during beam times: HADES data are recorded on dedicated servers (
⇠10) on experiment side. Data rates are in the order of 200-500 Mb/s. The data are
stored in binary list mode data format (hld) to a local disk array and simultaneously
written to the tape archive (tsm) and to the /lustre file system on the common
compute cluster to allow for a ”real time” online DST production with only a small
delay. For the online DST production 1000 cores on the farm are su�cient. The
typical data volume on raw data can reach 350 TB during an 4 weeks experiment.

2. Archiving of RAW data: Hld raw data are directly written to archive during beam
time. The tape archive has to provide the rate capability to archive close to real time.
The permanent longterm backup of experimental data is required by law. Backup
media are to be paid by HADES and include the costs for archiving infrastructure.

3. DST production: The DST production is CPU heavy with only marginal I/O per job
( 0.4Mb/s read, 0.3Mb/s write). Jobs on the batch farm are organized file by file in
parallel. To finish the production in a few days a decent amount of jobs (5000-6000)
is needed.

4. Simulation of experimental data: Typical event generators as UrQMD etc. usually
are compute heavy with little I/O. DST production for simulation therefore share
the requirements with data DST production.

5. Archiving of DST data: The final DST which are used for publications are archived
to tape. This operation is not time critical.
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Classification
..as an important input to computing model

• Computing (HEPSpec06) 
• Online & offline data processing

• Monte Carlo simulations

• Theoretical models and simulations


• Data storage (TB/year) 
• Raw data

• Derived data

• Simulation data


• Bandwidths (GB/s) 
• Data rates from experiment to GreenCube

• …to permanent storage

• Peak & average rates



FAIR Phase Zero
Looking back: compute@Virgo

• Virgo statistics integrated 
from 1/2021- 3/2023    
~82 kcores years


• Involves about 50 kcores 
~1 MHSP06 


• FAIR Phase Zero compute:                  
~60%                           
~0.5 MHSP06


• FAIR Phase Zero max disk 
usage: ~10 PB (2023)



“FAIR2028”



FAIR2028
Compute requirements for FS+

• FS would be without CBM


• Other non-FAIR activities not 
accounted for (e.g. ALICE)


• All pillars with strong computing 
requirements, CBM largest online 
requirements on shared system


• The offline computations have a 
dominant data-independent 
component for NUSTAR & PANDA

∑ = 1.9 MHSP06

∑ = 1.1 MHSP06

“Offline” (shared)

“Online” (shared)

*Note: theory requirements are included



FAIR2032
Compute requirements for MSVc

• Required compute resource scale 
up by factor 2 with respect to FS+


• Other non-FAIR activities not 
accounted for (e.g. ALICE)


• CBM & PANDA largest 
contribution for both on- and 
offline computations


• The offline computations have a 
dominant data-independent 
component for NUSTAR

∑ = 4 MHSP06

∑ = 2 MHSP06

“Offline” (shared)

“Online” (shared)

*Note: theory requirements are included



FAIR2028/32
Storage requirements

• Excluding pledges for Alice 
and other non-FAIR related 
storage


• The legal policy of keeping at 
least a copy of data 
elsewhere not included


• IT purchases 1-2 years before

FS+ MSV

FS+ MSV

FAIR Phase Zero



FAIR2028
Perspectives for a nominal FS+ year

CBM 100 days

NUSTAR 180 days

HADES 30 days

APPA 180 days

FAIR Phase Zero

FS+



FAIR2028
Perspectives for a nominal FS+ year

maximum online computing 

+ IO/data-intensive computations 
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FAIR2032
Perspectives for a nominal MSV year - PANDA CBM parallel

CBM 100 days

PANDA 100 days

NUSTAR 180 days

HADES 30 days

APPA 180 days

GSI purchases
(30-50% non-FAIR)

FAIR Tier0

TOTAL required for FS+

TOTAL required for MSV

Minimum TIER0 capacity (FS+)

Minimum TIER0 capacity (MSV)







• Involved in ESCAPE, PUNCH4NDFI, EuroLabs
• Observer in EOSC



• Involved in ESCAPE, PUNCH4NDFI, EuroLabs
• Observer in EOSC

• FAIR will be aligned with the open-science policies of GSI (Andrew Mistry et al.)
• F.A.I.R. policies to minimum basics that actually can be effectively realised!



FAIR principle for FAIR CDR?
…a couple of fair conceptual requirements



FAIR principle for FAIR CDR?
Findable 

• Centrally orchestrated storage and access of data essential to enable the 
data/software to become findable.


• Usage of Persistent IDentifiers (PID), Digital Object Identifiers (DOI).

• Coupling to GATE.

Accessible 
• Data and software produced/dedicated for FAIR communities and 

publications centrally stored.

• Common & “user-friendly” interface to store and retrieve data.

• https access (http->file), token-based authentication, xrootd 

frontend+lustre backend, eduGAIN.

• Level of openness (what? whom?) defined by each collaborations

• Technology followed-up within ESCAPE, e.g. open-source scientific 

software and service repository (OSSR) and implementation of “data lake”.

…a couple of fair conceptual requirements

Thorsten Kollegger scrabbles
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Reusable 
• Follows naturally once “FAI” policies are in place.
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…sensitive topic, hence very relevant!
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FAIR-IT support vs research lines responsibilities

FAIR-IT support for research
• Responsibility: “at the end of the fibres from the experiment”.
• Define and setup interfaces between experiment/user and 

compute/storage.
• Promote as much as reasonably acceptable common 

interfaces, hard/software infrastructures etc.
• Provide VMs, cloud service to minimise “idle” computers.
• Support commonly-used services/frameworks, e.g. Fairroot, 

FairMQ, CDash, Gitlab, …
• Maintain a strong local scientifically-based IT team well 

integrated within the various experiments with network/
interface to experts outside FAIR (f.e. GEANT, ROOT, …).

…sensitive topic, hence very relevant!



R&D aspects to investigate/follow-up
…that potentially reduce costs, provide more physics output… 
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FIG. 1 Schematic relationships between the topics discussed in this Colloquium. The diagram emphasizes the close connections
between theory, computations (both computational science and data science as well as many elements from computer science)
and experiments.

and the synthesis of the elements in the Cosmos, see
Fig. 1. Experiments produce data volumes that range in
complexity and heterogeneity, thereby posing enormous
challenges to their design, their execution, and the sta-
tistical data analysis.

Theoretical modeling of nuclear properties is, in most
physical cases of interest, limited by the large amount of
degrees of freedom in quantum-mechanical calculations.
The analysis of experimental data and the theoretical
modeling of nuclear systems aims, as is the case in all
fields of physics, at uncovering the basic laws of motion
in order to make predictions and estimations, as well as
finding correlations and causations for strongly interact-
ing matter. The broad aims of nuclear physics as a field
correspond to a highly distributed scientific enterprise.
Experimental e↵orts utilize many laboratories worldwide,
each with unique operation, data acquisition, and anal-
ysis methods. Similarly, the scales of focus spanned in
theoretical nuclear physics lead to broad needs for algo-
rithmic methods and uncertainty quantification. These
e↵orts, utilizing arrays of data types across size and en-
ergy scales, create an ideal environment for applications
of ML methods.

II. MACHINE LEARNING FOR NUCLEAR PHYSICS IN
BROAD STROKES

Statistics, data science, and ML form important fields
of research in modern science. They describe how to
learn and make predictions from data, and enable the

extraction of key information about physical processes
and the underlying scientific laws based on large datasets.
As such, recent advances in ML capabilities are being
applied to advance scientific discoveries in the physical
sciences (Carleo et al., 2019; Deiana et al., 2021).

Ideally, ML represents the science of building models
to perform a task without the instructions being explic-
itly programmed. This approach introduces in practice
a hierarchy of mathematical operations that enable the
computer to learn complicated concepts by building them
out of simpler ones. In terms of a graphical representa-
tion, this can be visualized as a deep network of training
and learning operations, often just referred to as deep
learning (Goodfellow et al., 2016).

There exist many ML approaches; they are often split
into two main categories, supervised and unsupervised.
In supervised learning, training data are labeled and one
lets a specific ML algorithm learn and deduce patterns
in the datasets.

This allows one to make predictions about future
events and/or data not included in the training set. On
the other hand, unsupervised learning is a method for
finding patterns and relationship in datasets without any
prior knowledge of the system. Many researchers also op-
erate with a third category, dubbed reinforcement learn-
ing. This is a paradigm of learning inspired by behav-
ioral psychology, where actions are learned to maximize
reward. One may encounter reinforcement learning being
accompanied by supervised deep learning methods such
as deep ANN. Furthermore, what is often referred to as
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“federated” computing - who ordered that?

• Federation: the act of uniting smaller or more localised 
entities to create a larger entity for mutual benefit, with 
agreed mixture of common policies and local autonomy.


• Consolidation: the act of reducing the number of entities 
by dissolution of existing ones and creation of a single 
larger entity.



“federated” computing - who ordered that?

David Britton, University of Glasgow

• Federation allows composition of new solutions out of existing investment (but you can 
only rearrange the building blocks if you still have the building blocks).

• Federation enables decision making to be devolved “down” the hierarchy to where it 
best sits, improving choices and protecting against domination of one community or 
voice to the detriment of the rest. 

• Federation can empower communities in a way that consolidation does not. All these 
elements become particularly important as the scale grows.

• Federation encourages diversity, of ideas, solutions, and people. It can protect against 
“group think” and stagnation, and can provide resilience against single points of failure 
– both geographical and technological. 

• Federation enables low risk evaluation and testing of “future” technologies, in particular 
where they are driven by specific well motivated communities that would otherwise be 
overlooked or dismissed by a large scale operation with a consolidated approach.

• Federation allows smaller operations to benefit from the full scale of the federation. 
E.g., security, identity management, accounting and allocation; but also in the building 
of larger communities to share ideas and solutions.

• Federation allows leveraging of local resources that otherwise would not be available.
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FIG. 1 Schematic relationships between the topics discussed in this Colloquium. The diagram emphasizes the close connections
between theory, computations (both computational science and data science as well as many elements from computer science)
and experiments.

and the synthesis of the elements in the Cosmos, see
Fig. 1. Experiments produce data volumes that range in
complexity and heterogeneity, thereby posing enormous
challenges to their design, their execution, and the sta-
tistical data analysis.
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“Machine Learning in Nuclear Physics”,
Bohnlein, Diefenthaler, Sato, Schram, arXiv:2112.02309

ML becomes popular essential
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• (Variational) Auto Encoders 
• Artificial Neural Networks 
• Bayesian Model Averaging/Mixing 
• Bayesian Optimisation 
• Bayesian Neural Networks 
• Convolutional Neural Networks 
• Ensemble Methods & Boosting 
• Generative Adversarial Networks 
• Gaussian Processes 
• k-Nearest Neighbours 
• Kernel Regression 
• Logistic Regression 
• Long Short-Term Memory 
• Principal Component Analysis 
• Linear Regression 
• Reinforcement Learning 
• Recurrent Neural Networks 
• Support Vector Machines 
• …

• Finding “right tool for the right job”!
• Integrating physics knowledge.
• Control of systematic errors. 
• Domain shifts in supervised learning.
• Deployment on online/embedded architectures. 
• Accessibility of model/trained data.
• Convincing and involving community.

Challenges!
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Towards an International Network
For Multiphysics Modelling, Machine learning and Model-
based Control in Accelerator Sciences and Technologies

*

Adrian Oeftiger (GSI) InM4CAST
Tentative working groups

✴Group 1 : Optimisation. Leader : Verena Kain (CERN)

✴Group 2 : Anomaly detection. Leader : Annika Eichler (DESY)

✴Group 3 : DATA generation and Simulation. Leader : Adrian Oeftiger (GSI)

✴Group 4 : Coordination, organisation, applications transverses et relations 
industrielles. Leader : Christine Darve (ESS)


