

STT Status

Peter Wintz (IKP, FZ Jülich) for the STT Group

June-12th, 2023 | PANDA Collaboration Meeting

Outline

- Workpackage Status
- Resources

- Implications new PANDA-Setup
 - STT Layout
 - SIS Beams

Workpackage List and Status

Straw series production (done, QA to be repeated)

2. Straw modules all components (new order for spring contacts, gas manifolds by FZJ)

3. Straw modules design and assembly, axial & stereo (new personnel & training time needed)

4. HV coupling boards, design and module adaption (open)

5. FE layout and mechanical system, **FEE-EMI** (**Pre-series setup needed**)

6. Straw module in frame assembly and alignment (Pre-series setup needed)

7. Cooling system concept: FEE + straw volume (PANDA-TS layout needed)

8. Mechanical frame concept and cable routing system (PANDA-TS layout needed)

9. ASIC & TRB3/5 Electronic readout (ASICs exist, FEB & TRB5sc ordered for tests, final order after)

10. High-Voltage System (Components identified, components partly existing)

11. Gas system (no personnel for system setup, DCS by IFIN-HH)

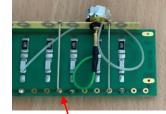
12. Detector Control System (IFIN-HH)

13. DAQ system set-up and operation

14. SW developments: FPGA processing, ...

Workpackage: Straw Modules

(Straw Module & HV Coupling)


- Straw module design
- 2. Straw module assembly, techniques
- 3. Set up one STT sector, axial & stereo layers
- 4. Straw module alignment technique

- 5. HV coupling boards
 - HV decoupling boards mounted to straw module
 - Crimp pin contact (Amplimite, 18 AWG)
 - Signal cables (16x flexTWP) to ASIC boards
 - via 2-pin row connector to ASIC
 - Tasks:
 - more dense layout 2x8 ch (d-sided, ~ 6cm width)
 - mechanical & electronic connection to ground belt

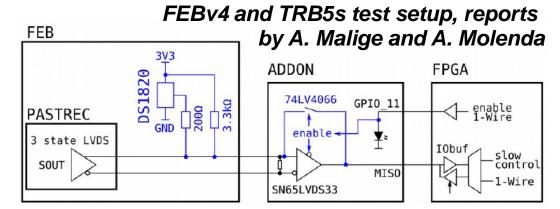
Grounding and mech. fixing Cable, 2x8ch flexible twisted pair

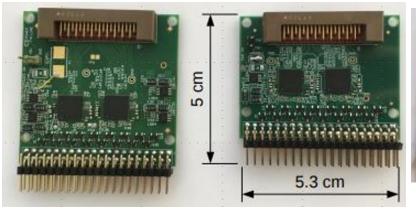
Workpackage: Readout System

(Update by M. Idzik, AGH; TRB5s by JU)

Readout Status

- TRB3 readout system installed for STS1 at HADES
- Readout system to be set-up in IKP


Readout components in production

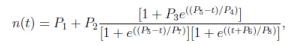

- all PASTTREC ASICs required produced and available
- new FEBv4 version (T & chip ID) pre-production done
- QA of new FEBv4 with good results (56 tested)
- assembly of 5-10 new addon for FEBv4 in progress
- TRB5s, 5 boards for STT ordered
- 1x TRB5s crate ordered

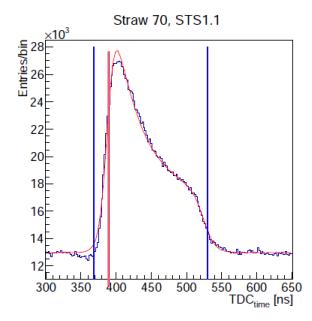
Total number of channels planned

- 320 ch (5 boards x 64 ch) (TRB5s)
- FEBv3 and TRB3 system in addition

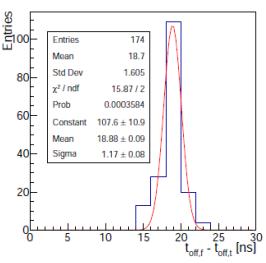
FEBv2 FEBv3

AddOn card with 1-wire switch

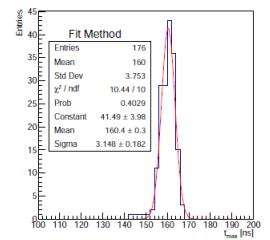




PASTTREC Results Phase 0


STS1/2 at HADES (Data Analysis by G. Perez-Andrade)

- STS1 settings
- Ar/CO2 (10%), 2 bar
- HV = 1700 V, gas gain 2×10^4
- ASIC settings:
 - 3.75 mV/fC
 - 20ns peaking time
 - threshold: 20 mV
 - sensitivity: 1.7 drift e-



TDC spectrum, time offset and tmax determination

time offsets, fit and threshold method, difference with σ < 1.2 ns

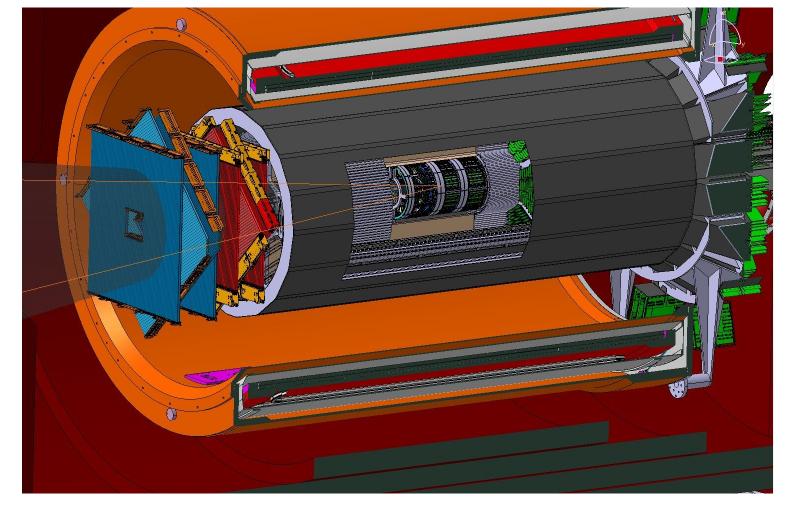
tmax, σ = 3.2 ns TE-time, σ ~ 2.9 ns

Status Resources

(To Date)

- In-kind AGH contract: STT&FT electronic readout
- In-kind FZJ: frozen
- IFIN-HH Bucharest
- Open workpackage, no funding
 - Gas system
 - Frame structure, cooling system
- Loss of workshops and personnel in FZJ

- New personnel for assembly in FZJ needed, discussions ongoing, additional training time needed
- Main next step: STT module assembly
- STT complete sector set-up and data-taking (cosmics, ⁹⁰Sr, ..)
- Resources for next 3-5 years must be allocated



New PANDA - TS

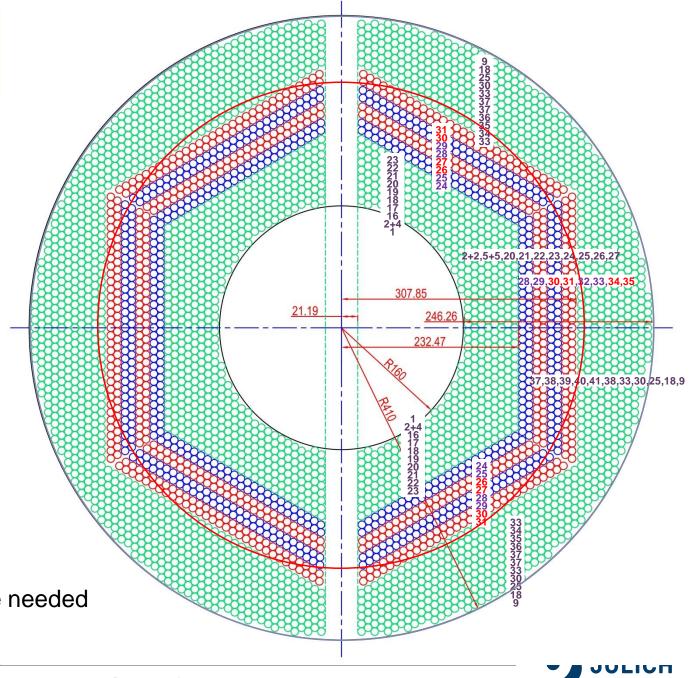
(New Layout and Dimensions (?))

- Magnet and field strength
 - DIRC layout, target geometry
- STT-backward region open or closed
- STT dimensions (outer radius)
- Tracking volume and resolution
- SIS 18/100: beam rates
- Interaction rates
- Particle rates, magnet field strength
- Maximum rates innermost straw layers
 - 4 < 1 MHz/straw</p>
 - < 20 kHz/cm ($\theta \sim 90^{\circ}$)

PANDA – STT Implications

(Dimensions and Layout)

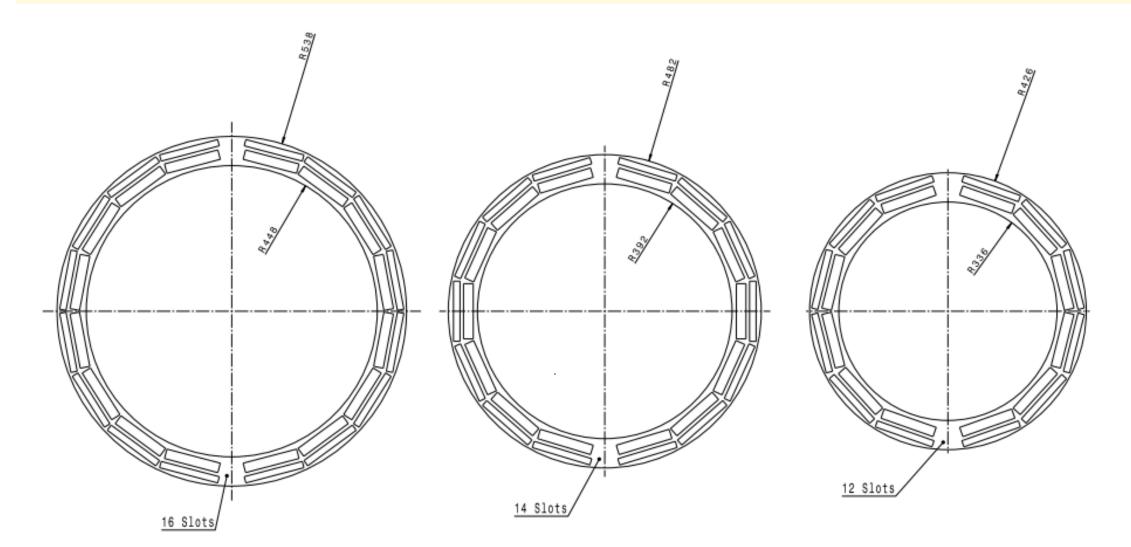
• PANDA org: R_{outer} = 44.8 cm


• PANDA new (?): R_{outer} = 33.6 cm

- RED ring: 32 cm: L' ~ 0.75 x L
- But axial/stereo layout to be modified (?)
- Radial filling: ~ 8 axial + 8 stereo-layers

$$\left(\frac{\sigma_{p_{tr}}}{p_{tr}}\right) = \sqrt{k_1(\sigma_r, N) \times \left(\frac{p_{tr}}{BL^2}\right)^2 + k_2 \times \left(\frac{1}{B\sqrt{LX_0}}\right)^2}$$

$$\left(\frac{\sigma_{p_{tr}}}{p_{tr}}\right) = \sqrt{k_1(\sigma_r, N) \times 1.8^2 \times \left(\frac{\mathbf{p}_{tr}}{BL^2}\right)^2 + k_2 \times \left(\frac{1}{B\sqrt{LX_0}}\right)^2}$$


Simulation: expected particle rates in STT volume needed

Thank you for your attention

