Simulation of Track and Event Realistic Reconstruction of Cascade Hyperons at PANDA

Vitor Jose SHEN

Computing Session at PANDA Collaboration Meeting

Tuesday, June 13, 2023

UPPSALA UNIVERSITET Simulation of Track and Event Realistic Reconstruction of Cascade Hyperons at PANDA* V. J. SHEN

•
$$\bar{p}p \to \bar{\Xi}^+ \Xi^- \to \bar{\Lambda}\pi^+ \Lambda\pi^- \to \bar{p}\pi^+\pi^+ p\pi^-\pi^-$$

- Previous simulation studies at only 2 \bar{p} beam momenta (4.6, 7 GeV)
- Extend to production threshold and several excess energies
- the lightest hyperons to introduce a sequential decay
- PandaRoot (Simulation and analysis software of PANDA)
- Track Findings Evaluation and Reconstruction Efficiency
- Realistic Reconstruction Algorithms vs. Ideal Reconstruction

(Some of the)Track Finders in PandaRoot

- Ideal Track Finder
- Barrel Track Finder
- (STT) Cell Track Finder
- Hough Track Finder
- Apollonius Triplet Track Finder
- Pz Finder
- FTS Track Finder

(Some of the)Track Finders in PandaRoot

Target Spectrosmeter (TS)			Sp	Forward Spectrosmeter	
Realistic	Primary	Secondary		(FS)	
3D	Barrel Track Finder Hough Track + Pz Finder	Cell Track + Pz Finder Apollonius Triplet Track + Pz Fi	nder	Realistic 3D	
2D	Hough Track Finder	Cell Track Finder Apollonius Triplet Track Finder		FTS Track Finder	
Ideal Tra	ack Finder	Track Evaluation (Quality Assurance, QA)	Reco	Event onstruction	

• Threshold production of Ξ + Ξ -

E_CM (GeV)	2.644
p_beam (GeV/c)	2.624

• Previous simulation studies:

Excess energy (MeV)	607	1231
E_CM (GeV)	3.251	3.875
p_beam (GeV/c)	4.6	7

• Excess energies above the production threshold at 1, 2, 3, 4, 5, 10, 15, 20 MeV:

Excess energy (MeV)	1	2	3	4
E_CM (GeV)	2.645	2.646	2.647	2.648
p_beam (GeV/c)	2.627	2.630	2.633	2.636
Excess energy (MeV)	5	10	15	20
E_CM (GeV)	2.649	2.654	2.659	2.664
p_beam (GeV/c)	2.639	2.654	2.669	2.684

Tracking QA at p_{beam} = 2.624GeV

- Hits Findings
- Ideal Tracks per Events
- The Ideal (Transverse, Longitude, and Total) Momentum
- The Transverse Momentum Resolution
- The Relative Transverse Momentum Resolution
- The Longitudinal Momentum Resolution
- The Relative Longitudinal Momentum Resolution
- The Total Momentum Resolution
- The Relative Total Momentum Resolution
- Track Efficiency vs. Transverse Momentum
- Track Efficiency vs. Longitudinal Momentum
- Track Efficiency vs. Total Momentum
- Track Efficiency vs. ϑ
- Track Efficiency vs. φ
- Quality of Tracking

1K Events

Event10K EventsReconstructionEfficiency of theproductionthreshold and 8excess energies

- Combinatorics
- After Full Truth Match
- Reconstruction

Efficiency

Ideal Tracks per Event

Ideal Momentum

(a) Ideal Transversal Momentum at TS

(a) Ideal Longitudinal Momentum at TS

(b) Ideal Transversal Momentum at FS

(b) Ideal Longitudinal Momentum at FS

(a) Ideal Total Momentum at TS

(b) Ideal Total Momentum at FS

Transverse Momentum Resolution Transverse Momentum Resolution **Transverse Momentum Resolution** 160 counts counts Barrel Cell 250 140 Cell + Pz Hough Hough + Pz 120 200 **Apollonius Triplet** Apollonius Triplet + Pz 100 150 80 60 100 40 50 20 0 0.15 0.2 p_t^{RECO} - p_t^{MC} / GeV 0.05 0.1 -0.05 0 -0.2 -0.15-0.1 0.15 0.2 p_t^RECO - p_t^MC / GeV -0.05 0.05 0.1 -0.2 -0.15 -0.1 0 **Transverse Momentum Resolution** counts 60 FTS 20 10 Tuesday, June 13, 2023 0.15 0.2 p_RECO - p_+^MC / GeV -0.05 0 0.05 0.1 -0.15 -0.1

Transverse Momentum Resolution (II)

Relative transverse momentum resolution

Tracking QA $(p_t^{RECO} - p_t^{MC}) / p_t^{MC}$

Track Finder:	Relative transverse momentum resolution [GeV/c]
Cell	0.1148 ± 0.0062
Hough	0.07472 ± 0.00184
Apollonius	0.05856 ± 0.00228
Barrel	0.05936 ± 0.00433
Cell + Pz	0.05061 ± 0.00497
Hough + Pz	0.05035 ± 0.00279
Apollonius	0.04726 ± 0.00260
FTS	0.04062 ± 0.0486

Total and Longitudinal Momentum Resolution Tracking QA

Track Finding Efficiency vs. Transverse Momentum

Track Finding Efficiency vs. Transverse Momentum

Tracking QA

Track Finding Efficiency vs. Longitudinal Momentum Tracking QA

Track finding efficiency vs θ

Tracking QA Track Finding Efficiency vs. Azimuthal angle

Track finding efficiency vs ϕ Track finding efficiency vs ϕ primary Track finding efficiency vs ϕ secondary Cell fficien Hough Apollonius Triplet 0.8 0.6 0.2F 0.2F Hough 0.1 **Apollonius Triplet** 0.1F Apollonius Triplet -150-100 -50 50 100 150 -150 -100 -50 50 100 150 -150 50 100 150 -100[deg] ¢[dea] ø[dea] Track finding efficiency vs o primary Barrel Track finding efficiency vs ϕ Barrel Cell + Pz Cell + Pz Hough + Pz Efficien 0.9 Hough + Pz Barrel 0.9 Efficie Apollonius Triplet + Pz 0.9 Cell + Pz Apollonius Triplet + Pz Hough + Pz 0.8F Apollonius Triplet + Pz 0.7 0.7 -100 -50 -150 0 50 100 150 -150 -100 -50 50 100 150 50 100 -150 -100 -50 150 ø[deg]

Combinatorics and FTM

- Proton and π^+
- Antiproton and π^-
- Lambda and π^+
- Anti-Lambda and π^-

- Full Truth Match
 - Correct PID
 - Correct decay mother-daugtehr relationship

The (Event) Reconstruction Efficiency (I)

The Final: (Event) Reconstruction Efficiency*

*The Reconstruction Efficiency is obtained by comparing the the reconstructed events from Ideal Track Finder (0% smearing) and each Realistic Track Finders

The End: Thanks for your attention!

V. J. Shen

UPPSALA UNIVERSITET

Appendix: Briefly Introduction

Appendix: Typical Hyperons

Y	q	<i>cτ</i> (cm)	T (s)	$M (GeV/c^2)$	Decay
Λ	uds	7.89	$2.632 imes 10^{-10}$	1.116	pπ ⁻ (63.9%)
					$n\pi^{0}$ (35.8%)
Σ+	uus	2.404	$8.018 imes10^{-11}$	1.189	$p\pi^{0}$ (51.57%)
					$n\pi^+$ (48.31%)
Σ^0	uds	$2.22 imes 10^{-9}$	$7.4 imes10^{-20}$	1.193	$\Lambda\gamma$ (100%)
Σ^{-}	dds	4.434	$1.479 imes10^{-10}$	1.197	nπ ⁻ (99.848%)
Ξ0	uss	8.71	$2.0 imes10^{-10}$	1.315	$\Lambda\pi^0$ (99.524%)
Ξ-	dss	4.91	$1.639 imes10^{-10}$	1.322	$\Lambda\pi^-$ (99.887%)
Ω-	SSS	sss 2.461	$8.21 imes 10^{-11}$	1.672	ΛK^{-} (67.8%)
					$\Xi^0 \pi^-$ (23.6%)
					$\Xi^{-}\pi^{0}$ (8.6%)