
The FtsTrackFinder and Online Processing
FtsTrackFinder improvements and accelerated implementation,
PandaRoot for online processing concept, SYCL programming model

PANDA Collaboration Meeting 23/2 | 13.06.2023

Bartosz Soból

Updated FtsTrackFinder

● Algorithm details: talk at CM 22/2

● Modifications in ZOX hit selection

○ Additional constraint -

single hit per layer

● Bug fixes

2

Accuracy results - full tracks

● Sim tracks passing through at least 40 straws

● Reco tracks with all parts reconstructed

● Sim and reco tracks considered as matched

when at least 80% of straws match

3

muons beam
mom

mom ratio
new

ratio
prev

1 1,0 0,55 97% 95%

3 1,0 0,55 95% 93%

5 1,0 0,55 94% 90%

8 1,0 0,55 92% 85%

1 5,0 2,55 97% 95%

3 5,0 2,55 96% 94%

5 5,0 2,55 96% 92%

8 5,0 2,55 94% 88%

1 15,0 5,55 96% 95%

3 15,0 5,55 97% 94%

5 15,0 5,55 96% 92%

8 15,0 5,55 95% 88%

10000 events, muons, theta ∈ (0.0, 15.0)

Accuracy results - full tracks

muons beam
mom

mom ratio
new

ratio
prev

1 1,0 0,55 96% 95%

3 1,0 0,55 91% 86%

5 1,0 0,55 87% 76%

8 1,0 0,55 80% 61%

1 5,0 2,55 97% 95%

3 5,0 2,55 94% 88%

5 5,0 2,55 91% 77%

8 5,0 2,55 86% 62%

1 15,0 5,55 97% 95%

3 15,0 5,55 94% 88%

5 15,0 5,55 91% 77%

8 15,0 5,55 87% 62%

10000 events, muons, theta ∈ (2.5, 5.0)

4

Accuracy results - FT1234 tracks (low energy)

● Simulation tracks passing through

○ at least 26 straws in FT1234

○ less than 14 straws in FT56

(can’t be reconstructed)

● Reco tracks reconstructed only in FT1234

● Sim and reco tracks considered

as matched when at least 80% of straws in

FT1234 match

muons
beam
mom

mom
ratio
new

ratio
prev

1 1,0 0,55 85% 82%

3 1,0 0,55 80% 75%

5 1,0 0,55 80% 74%

8 1,0 0,55 80% 71%

10000 events, muons, theta ∈ (0.0, 15.0)

5

Momentum estimation - 2022

Method 1

● P = 0.3BR

● B from the middle of the magnet (Z = 464cm)

● Radius from straws in FT34

1 muon 5.55 GeV
GeV

n

6

Momentum estimation

Method 1

● P = 0.3BR

● B from the middle of the magnet (Z = 464cm)

● Radius from straws in FT34

1 muon 5.55 GeV
GeV

n

7

Momentum estimation

Method 2 (only higher energy particles)

● P = 0.3BR

● B from the middle of the magnet (Z = 464cm)

● Radius from tracks in FT12/56

1 muon 5.55 GeV
GeV

n

8

Updated FtsTrackFinder

● Any feedback on algorithm performance will be much appreciated

○ Evaluation on more complex/realistics physics cases required

● Usage example macro can be found in PandaRoot repository:

macro/tracking/trackingTasks/ftsTrackFinder.C

9

● PandaRoot Core module

○ Simple, trivially copyable data structs for Hits, Digis, Tracks, etc.

○ Algorithms impl. operating only on simple data types ^

○ No TObject inheritance

■ Can be made available in ROOT context by dictionaries (linkdef)

○ Ability to be compiled standalone

■ Parameters/geom will be difficult here

● ROOT wrappers for Core data types

○ Classes owning simple objects

○ TObject or FairRoot base classes inheritance

■ Additional functionality for offline analysis and deep ROOT interop

PandaRoot for online processing

10

● Simplest example

PandaRoot for online processing

struct Hit {
 uint16_t fStrawId;
 float fIsochrone;
};

class HitWrapper : public TObject{
public:
 inline uint16_t GetStrawId() {
 return fHit.fStrawId;
 }
 inline float GetIsochrone() {
 return fHit.fIsochrone;
 }

private:
 Hit fHit;
 ClassDef(HitWrapper, 1);
}; 11

● Option 1 - Plain C++

● Option 2 - Accelerated/parallelized - native: CUDA, HIP, OpenMP

○ Hard to maintain, multiple implementations for different hardware

● Option 3 - Accelerated/parallelized - vendor and platform agnostic: SYCL

○ Hardware in the GreenCube will change before PANDA operation

○ FtsTrackFinder implemented

○ Potential CBM cooperation

■ They are interested in multi-backend vendor-agnostic solutions

■ I’m implementing one CBM algorithm in SYCL to compare with native version

■ They also have an in-house solution

○ Other options: Kokkos, Alpaka

How to implement online/offline, CPU/GPU

12

Potential for SYCL in PandaRoot

● Supports wide range of platforms

○ Vendor agnostic GPU support is crucial

○ Always possible to fall-back to CPU when necessary

○ Easy to test CPU vs GPU performance

● Living ecosystem

○ Evolving standard, growing community, open-source and stable compilers

(Intel DPC++, hipSYCL)

● Easy basics and easy to deploy on local machines (hipSYCL, OpenMP CPU backend)

○ Can be even bundled using CMake

● SYCL code will most probably work on Virgo successor

13

FtsTrackFinder SYCL implementation strategy

● Start with plain C++ single-threaded code

● Port to SYCL with minimal possible effort

● Introduce optimisations

○ Mainly data-flow and memory layout

○ Try to keep kernel code similar to initial version

○ Try to stay within simpler SYCL interfaces (buffers, ranges)

● Result: 7 Kernels + helper functions, ~1.5k lines of accelerated code

● Single code for different platforms

14

Performance evaluation

● Modern hardware from all leading vendors

○ Rome, Milan, Cascade Lake - CPU

○ V100, A100, MI250 - GPU

○ Alveo U280 - FPGA

● Two major implementations:

○ hipSYCL (0.9.4)

○ DPC++ (2023.0, 2023.1 - MI250)

■ triSYCL/sycl - U280

● Compared with native CUDA implementation on NVIDIA GPUs

15

Performance summary

16

Performance summary

● Algorithm itself isn’t ideal for GPU

○ Lot’s of branches and not parallelizable short loops

○ More data-bound than compute-heavy

● CPU parallelization is quite good

○ Up to ~16 threads

● GPU performance is mediocre compared to CPU

○ Increases with larger batch size

○ Probably wouldn’t improve significantly even with further fine-tuning

○ GPU optimisations also positively affect CPU performance

○ With SYCL, we have an efficient CPU version for free

17

Performance summary

● Alveo U280 performance ~2 orders of magnitude worse

○ Didn’t introduce any FPGA-specific optimisations

○ Adventure making the code compile and run

■ Still has some issues - potentially compiler bugs

○ Great to have SYCL available on such platforms

■ Certain algorithms can highly benefit

● Intel FPGAs - tools probably more mature, but not tested (yet)

18

● SYCL can be used to build software for heterogeneous platform

○ With single programming model / API

● If GPU fails to deliver performance, parallel CPU version is free

○ Resources saved

● FtsTrackFinder already uses small simple data types internally

● SYCL implementation is being adapted to PandaRoot Core

○ Almost finished

○ It’s not efficient on GPU, but can work on CPU and as a demo

● Other algorithms and subsystems can follow

○ I can help with implementation

Summary

19

Backup

20

What is SYCL?

● Open standard, higher-level heterogeneous programming model - CPU, GPU, FPGA, ...

● Based on standard C++17 - without language extensions

○ Tools for C++ work with SYCL (IDEs, static analysis, linters, formatters, …)

● Single source for host and kernel/device code

○ Kernel == any callable (function, lambda, function object)*

○ C++ functions called by kernel are also compiled as a part of device code

○ Implicit device-host separation

● Implicit memory management and task scheduling

21

CPU performance

22

GPU performance

23

