# Methods of Closed Orbit Correction for Particle Accelerators



#### **Plan for Master Thesis**







Thesis: Methods of Closed Orbit Correction for Particle Accelerators

- What is a Closed Orbit?
- And why do you need to correct it?
- Which methods will be used for the correction?



### **Motivation**

- Quadrupole misalignment and field errors in main dipoles (manual correction/ correction specified for a certain accelerator)
- Flexible target orbits (e.g. around obstacles or on a sensor)
- External perturbing field

- $\Rightarrow$  Correction methods, which steer the beam on the desired target orbit
- ⇒ Most commonly used method is Singular Value Decomposition (SVD)
- $\Rightarrow$  More iterations are needed because of nonlinearities



### **Thesis Contents**

### 1. Robustness of conventional correction methods in case of degeneracy & asymmetry:

- electron cooler dipole correctors perturbing the global orbit
- $\sigma$  optics shifting  $\gamma_t$  by splitting up even and uneven sector quadrupole families

- 2. Use Bayesian inference model to:
  - correct closed orbit at the BPMs
  - correct closed orbit along entire machine (in between BPMs)



## 1. Compare methods of closed orbit correction

Examine robustness of different methods:

- Singular value decomposition (SVD)
- Harmonic correction
- Correction using a Bayesian inference model



## **Conventional correction methods**

The examined conventional correction methods (SVD and harmonic correction) are based on orbit response matrix (ORM):

 $\Delta \theta_{\text{steerer}} = \Omega^{-1} \Delta \mathbf{x}_{\text{BPM}}$ 

1. Orbit response matrix  $\Omega$  is needed (measured in an accelerator or extracted from a model)

- 2. Pseudo inverse of orbit response matrix is calculated
- 3. Steerer angle  $\theta$  is calculated
- 4. Nonlinear machine needs more iterations



### Measurement of orbit response matrix

 $\Delta \mathbf{x}_{\rm BPM} = \Omega \Delta \theta_{\rm steerer}$ 



- A nonlinear machine (SIS18) with chromaticity correction is shown
- Simulated with Mad-X
- Approximated via polyfit
- Linear component is expressed via the ORM



## Closed orbit of a nonlinear machine



- Includes errors due to quadrupole misalignment and field errors of main dipoles
- Includes chromaticity correction with sextupoles



## **Correction with SVD**



- Linear machine
- Includes quadrupole misalignment errors



- Nonlinear machine due to chromaticity correction
- Includes quadrupole misalignment errors





- Try SVD with use cases: electron cooler setting and sigma optics setting
- Compare to harmonic correction
- Include measurement errors and steerer current errors



## Corrected closed orbit of a nonlinear machine



- After 9 Iterations closed orbit at BPMS corrected
- In between BPMs still shifted



## 2. Bayesian inference

#### What is Bayesian inference?

Bayesian inference or Bayesian learning is an approach to statistical inference that allows beliefs (prior) about a hypothesis or model to be updated (posterior) by integrating new data (evidence).

Bayesian inference is used to build a surrogate model

- with Gaussian Process
- based on physical model



## **Bayesian inference model with Gaussian process**



source: https://scikit-learn.org/0.17/auto\_examples/gaussian\_process/
plot\_gp\_regression.html

Gaussian process:

- Represents a function whose function values, can only be modeled with certain uncertainties and probabilities
- Is constructed from suitable functions of the expected values, variances and covariances
- Is a probability distribution of functions



## Bayesian inference model based on physical model



- Constructed from a set of closed orbits based on various field error distributions
- Uses the knowledge about the physics of closed orbits



## **Possible Applications**

- Idea 1: Use BI model to correct closed orbit at BPMs
- Idea 2: Use BI model to correct closed orbit along entire machine (in between BPMs)
  - systematic measurement error
  - systematic steerer error
- Idea 3: Use BI model to include angle x' for correction
- Idea 4: Compare correction based on BI model to conventional methods in case of BPM failure

ightarrow robustness with the different use cases?



## **Summary & Outlook**

### 1. Robustness of conventional methods

- Preparatory work: implemented correction using SVD (with measurement module)
- Robustness of methods in case of degeneracy and asymmetry
- Comparison of the correction methods
- 2. Bayesian inference model
  - Correction at BPMs
  - Correction in between BPMs
  - Learn systematic errors
  - Comparison to conventional methods in case of BPM failure

Outlook: Try correction methods for use cases in real machine during beam time.









### **Use cases/ Scenarios**

- 1. controlling to no/small deviation of target orbit realistic machine
- 2. sigma optics / changing transition energy setting
- 3. electron cooler setting
- 4. Included errors  $\rightarrow$  realistic machine
  - measurement errors BPM
  - error of control elements

| Blöcke<br>Untertitel    |  |  |
|-------------------------|--|--|
|                         |  |  |
| Standardblock mit Titel |  |  |

Blockinhalt

Ohne Titel

Exampleblock

Blockinhalt

Alertblock

Blockinhalt



### The certain Input

#### Objective

An universal algorithm, which gets a certain input and finds the optimal correction parameters, which steer the beam on the desired target orbit.

#### Input:

- Target orbit (depending on use case)
- (ideal) model of the accelerator
- "state" of the accelerator via the python interface

