One-day Satellite Workshop on Physics opportunities with proton beams at SIS100 21 June, 2023 at Krakow

Strangeness Physics at J-PARC

Hiroyuki NOUMI*,# *Research Center for Nuclear Physics, Osaka University #Institute of Particle and Nuclear Studies, KEK One-day Satellite Workshop on Physics opportunities with proton beams at SIS100 21 June, 2023 at Krakow

Strangeness and Charm Physics at J-PARC "What we are discussing to push forward physics at the J-PARC Hadron Experimental Facility" - From the 3rd WS on HEF-ex Project https://kds.kek.jp/event/44086/ Hiroyuki NOUMI*,#

*Research Center for Nuclear Physics, Osaka University #Institute of Particle and Nuclear Studies, KEK

Current Hadron Experimental Facility at J-PARC

Linac

MLF

AN IN TARGE

RCS

(arXiv:2110.04462)

Extension Project of the J-PARC Hadron Experimental Facility

November 2022

Taskforce on the extension of the Hadron Experimental Facility

Main Ring

J-PARC

West

Extension Project of the J-PARC Hadron Exp. Facility →F. Sakuma's Plenary talk, 24/Jun 12:00PM@MESON2023

2029-? 2030-?

Extension

Origin and Matter Evolution in the Universe

Matter/Anti-matter Sym. Breaking

• Beyond SM in Flavor Physics

High Density Matter: NS

• Strangeness Nuclear Physics

 $g_{QCD} = \sum_{q=u,d,s,c,b} \bar{q} (i\gamma_{\mu} D^{\mu} - m_{q}) q$

Properties of strongly interacting matter?

Formation of hadronic matter?

Underlying symmetries

Degrees of freedom: from quarks/gluons to baryons/mesons?

Origin of mass?

 $= \sum_{q=u,d,s,c,b} \bar{q} (i\gamma_{\mu} D^{\mu} - m_{q}) q$ QCD CBN Properties of strongly interacting and panda Formation of hadronic real Underlying sy Degrees Streedom: from quarks/gluons to baryons/mesons? Origin of mass?

Flavor Physics: New Physics Search at KOTO Step-2

Is there new physics beyond the Standard Model?

Rare kaon decay: $K_L^0 \rightarrow \pi^0 \nu \overline{\nu}$

One of the best probes for new physics search

Directly break CP symmetry

- Suppressed in the SM \rightarrow Branching ratio \sim 3×10⁻¹¹
- Small theoretical uncertainties (\sim 2%)

μ -e conversion **@** COMET

Spectroscopy of Hadrons

properties in medium?

- How does QCD form hadrons?
 - Mechanism of dynamical mass generation
 - Dynamics of effective DoF in Hadrons

Meson in Nuclear Medium Spectral changes of vector mesons in nuclei • $pA \rightarrow \rho X, \omega X, \phi X \rightarrow e^+ e^- X$ (J-PARC E16)

Meson in Nuclear Medium -- Related Programs

• $pA \rightarrow \phi X$ $\rightarrow K^+ K^- X$ (J-PARC E88) - High Statistics

- $pA \rightarrow J/\psi X$ (J-PARC P91) – Intrinsic Charm (IC) in a Nucleon
 - |uud<mark>c</mark>c̄⟩

17

Spectroscopy of Baryons to reveal dynamics of Constituent Quarks

"short-range" int.

 $H = K + V^{Conf} + V^{Coul} + V^{SS} + V^{LS} + \cdots$

- Diquarks (DQs)
 - Color Magnetic Interaction (OGE)
 - Origin of the SS and LS forces is an open question

i.e. Instanton Induced Interaction (III, KMT int.)

- may form "BE condensate" in high-density matter
- Hadronic Molecule
 - Behavior of QCD in a long-range region

Spectroscopy of Baryons at p20/K10 Charm and Multi-strange Baryons

XDisentangle motions of a quark pair (diquark) by introducing different flavors

T. Yoshida, E. Hiyama, A. Hosaka, M. Oka, K. Sadato, Phys. Rev. D92 (2015) 114029

Production and Decay of Charmed Baryons (E50)

Production and Decay of Multi-strange Baryons (E97/P85)

Charm Baryon Spectroscopy at High-p ($\pi 20$)

Diquark [qq]: an effective degree of freedom to describe hadrons

- [qq] would be singled out by Introducing a Heavy Quark
- Characteristic level structure, production rate, and decay branching ratio

Spectroscopy of Baryons at $\pi 20$ D_{30} Dibaryon and P_c -analog N^* state

• $pp \rightarrow \pi^{-}\pi^{-}D_{30}^{++++}$ $\rightarrow \pi^{-}\pi^{-}\pi^{+}\pi^{+2}$ He (E79)

• $\pi^- p \rightarrow \phi n \rightarrow K^+ K^- n$ (P95)

- $N^*(2050)$ coupled to ϕn ?

 P_C

π nucleon resonances p n

Sang-Ho Kim, private comm.

LHCb collab. PRL 122 , 222001(2019) 22

Spectroscopy of Baryons at $\pi 20$ Baryon Structure in an Exclusive Drell-Yan Process

Stability of Neutron Stars w/ $m \gtrsim 2m_{\odot}$

PSR J0952–0607, $(2.35 \pm 0.17)M_S$ Astr. Jour. Lett. 934, L17(2022)

PSR J0740+6620, $(2.08 \pm 0.07)M_S$ Astr. Jour. Lett. 915, L15(2021)

PSR J0348+0432, $(2.01 \pm 0.04)M_S$ Science 380, 1233232(2013)

PSR J1614-2230, $(1.97 \pm 0.04)M_S$ Nature 467, 1081(2010)

EoS dependence of GW (theory)

Stability of Neutron Stars w/ $m \gtrsim 2m_{\odot}$

Composition of Cold NS matter, Mass vs central density and Radius

J. R. Stone et al., MNRAS 502, 3476(2021)

Hypernuclear physics

Based on Miwa's slide

<u>Baryon-Baryon interaction</u> <u>Study of light Λ , Ξ hypernuclei</u> <u>Spectroscopy of heavy hypernuclei</u>

World–Wide Network of Subatomic Physics ¹⁰

