

What does progress in the field mean?

From effective field theory to first principle calculations

Particle production at the LHC accelerator

Large Hadron Collider LHC

 $E = mc^2$

Each pp collision leads to the creation of ~ 30 new particles

From 2022 we can record 500.000 collisions per second

Biggest accelerator worldwide where the highest energies are achieved : $\sqrt{s} = 13$ TeV for pp collisions

Particle production and decays in ALICE

 $\Lambda \to \pi^- + p$ $\Xi^- \rightarrow \Lambda + \pi^ \Omega^- \to \Lambda + K^ \Sigma^0 \to \Lambda + \gamma$ $\varphi \to K^+ + K^ D \to K \pi \pi$

The very good PID capabilities of the detector result in very pure samples!

Hyperons reconstruction with ALICE

Measurement of the hyperon-nucleon interaction

C(k*)>1: attractive interaction

 $C(k^*) = \xi(k^*) \frac{SE}{ME}$

C(k*) = 1: no interaction

C(k*) <1: repulsive interaction

ALICE Coll. PLB 832 (2022) 137272

ALICE Experiment

ALICE

L

Measurement of the hyperon-nucleon interaction

ALICE Coll. PLB 832 (2022) 137272

CATS (<u>Correlation Analysis Tool using the Schödinger equation</u>) D. Mihaylov, L. Fabbietti et al. EPJC 78 (2018)

ALICE Experiment

ALICE

Anisotropic

Pressure gradients

+

Given the pair transverse mass $m_T = \sqrt{\frac{1}{4}(p_{1T} + p_{2T})^2 + (m_1 + m_2)^2}$

$$\rightarrow S(r) = G(r, r_{core}(m_T)) = \frac{1}{(4\pi r_{core}^2)^{3/2}} \exp\left(\frac{-r}{4r_{core}^2}\right)$$

Determination of the particle-emitting source

Radial

Anisotropic

Pressure gradients

Given the pair transverse mass $m_T = \sqrt{\frac{1}{4}(p_{2T} + p_{1T})^2 + (m_1 + m_2)^2}$

 $\rightarrow S(r) = G(r, r_{core}(m_T)) = \frac{1}{(4\pi r_{core}^2)^{3/2}}$ - exp $4r_{core}^2$

Determination of the particle-emitting source

ALICE Coll., PLB, 811 (2020)

$$C(k^*) = \left| S(r) | \psi(\vec{r}, \vec{k^*}) \right|^2$$

pp Correlation: AV18 + Coulomb potentials used with CATS to calculate $\psi(\vec{k} *, \vec{r})$

Radial

Anisotropic

Pressure gradients

+

Given the pair transverse mass $m_T = \sqrt{\frac{1}{4}(p_{1T} + p_{2T})^2 + (m_1 + m_2)^2}$

$$\rightarrow S(r) = G(r, r_{core}(m_T)) = \frac{1}{(4\pi r_{core}^2)^{3/2}} \exp\left(\frac{-r}{4r_{core}^2}\right)$$

Determination of the particle-emitting source

 $< c\tau >$

1.6 fm

4.7 fm

Resonances with $c\tau \sim r_{core} \sim 1 \text{fm} (\Delta + +, N*, \Sigma*)$

		fraction
$(n_2)^2$	Proton	33 %
	Lambda	34 %

Particle

U. Wiedemann and U. Heinz PRC 56 (1997)

Primordial

$$E(r,s) = \frac{1}{s} \exp\left(-\frac{r}{s}\right)$$

$$s = \beta \gamma \tau_{res}$$

 \mathbf{X}

Radial

L

Two body interaction among many hadrons

L

*k** (MeV/*c*)

Our recent papers:

CATS: EPJA 78 (2018) Projector: EPJC 82 (2022) Review 1: Prog.Part.Nucl.Phys. 112 (2020) Review 2: Ann. Rev. Nucl. Part. Sci. 71 (2021) p- ϕ bound state: arXiv:2212.12690 p-K: PRL 124 (2020) 092301 p-K: PLB 822 (2021), EPJC (2022) p-p, p-Λ, Λ-Λ: PRC 99 (2019) 024001 Λ-Λ: PLB 797 (2019) 134822 p-E-: PRL. 123 (2019) p-Ξ-, p-Ω-: Nature 588 (2020) 232–238 p-Σ⁰: PLB 805 (2020) 135419 p-φ: PRL 127 (2021) $p - \bar{p}, \Lambda - \bar{\Lambda}, p - \bar{\Lambda}$: PLB 829 (2022) р-Л: PLB 832 (2022) 137272 Λ – Ξ: PLB 137223 (2022) D-p: PRD **106**, 052010 (2022) ppp, ppΛ: arXiv:2206.03344

What can be done better elsewhere

- Reconstruction of Σ^0 via decay to $\Lambda + \gamma$
- γ reconstructed from conversion e+e-
- p Σ^0 compatible to the baseline

 \rightarrow stay tuned for data of Run 3 for higher statistics!

But a measurement in HADES with p+p collisions and the electromagnetic calorimeter could be competitive. Same for Ξ^0

Scattering in nuclear matter

Λ-p source: 1.24 times smaller than p-p source (from UrQMD)

p-scattering in the nucleus

A-scattering in the nucleus

A-p Correlation in p+Nb collisions at $\sqrt{s} = 3.5$ GeV

J. Adamczewski-Musch et al., [HADES coll.] Phys. Rev. C. 94 (2016).

New data on p+p collisions at 3.5 GeV Factor 100 (?) more statistics than this plot

Λ-p Correlation in p+p collisions at \sqrt{s} = 13 TeV

Vector Meson- Nucleon final state interaction

H. Gao, T.S.H. Lee & V. Marinov, Phys Rev C 63 (2001) 022201
Y. Koike & A. Hayashigaki, Prog Theor Phys 98 (1997) 631
F. Kling, N. Kaiser & W. Weise, Nucl.Phys. A 624 (1997) 527-563
IS, L. Pentchev, & A.I. Titov, Phys Rev C 101 (2020)
W.C. Chang *et al*, Phys Lett B 658, 209 (2008)
S. Acharya *et al*, Phys. Rev. Lett. 127 (2021) 172301

Spin averaged scattering parameters

C(K*)

- Observation of **attractive** $p-\phi$ interaction
- Spin-averaged scattering parameters extracted by employing the analytical Lednicky-Lyuboshits approach
 R. Lednicky and V.L. Lyuboshits, Sov. J. Nucl. Phys. 53 (1982) 770
- Imaginary contribution to the scattering length f₀ accounts for inelastic channels

 $\Re(f_0) = 0.85 \pm 0.34(stat.) \pm 0.14(syst.)$ fm $\Im(f_0) = 0.16 \pm 0.10(stat.) \pm 0.09(syst.)$ fm $d_0 = 7.85 \pm 1.54(stat.) \pm 0.26(syst.)$ fm

- Elastic p– φ coupling dominant contribution to the interaction in vacuum

MÜNCHEN

ALICE Collab., PRL 127 (2021) 172301 1.5 ALICE pp √s = 13 TeV High-mult. (0 - 0.17% INEL > 0)1.4 $0.7 < S_T < 1.0$ p-φ ⊕ <u>p</u>-φ 1.3 Lednický-Lyuboshits model 1.2 $d_0 = 7.85 \pm 1.54$ (stat.) ± 0.26 (syst.) fm $\Re(f_0) = 0.85 \pm 0.34 \text{ (stat.)} \pm 0.14 \text{ (syst.) fm}$ 1.1 $\Im(f_0) = 0.16 \pm 0.10 \text{ (stat.)} \pm 0.09 \text{ (syst.) fm}$ 50 250 400 300 350 100 150 200

*k** (MeV/*c*)

Lattice potential ⁴S_{3/2}

- First simulation of the N-φ system in large lattice
- $(m_{\pi} = 146.4 \text{ MeV})$
- due to no common quarks

Studying spin dependent interaction

- Yan Lyu et al., Phys. Rev. D 106 (2022) 074507

19

Studying spin dependent interaction

⁴S_{3/2} channel

- Dominated by elastic scattering states
- Modelled using HAL QCD potential Yan Lyu et al., *Phys. Rev. D* **106** (2022) 074507
- Potential at physical-pion mass

IMPRS Colloquium | Emma Chizzali

- Shows signs of open channels
 - $\Lambda K (^{2}S_{1/2}), \Sigma K (^{2}S_{1/2})$
- No potential available from lattice QCD yet, due to possible effects from these open channels
- Modelled using complex potential provided by Dr. Yuki Kamiya

$$V_{\frac{1}{2}}(r) = V_{LATTICE, MOD}(r) + i \cdot \sqrt{f(r; b_3)} \cdot \frac{\gamma}{r} e^{-m_K \cdot r}$$

Kaon exchange considered to give most significant contribution to coupling of decay channels

Imaginary Part of Pot

Real Part of Pot $V_{LATTICE, MOD}(r) = \beta \cdot V_{short}(r) + V_{2\pi}(r)$ - 1/Z

arXiv:2212.12690 [nucl-ex]

 $\Re(d_0) = 0.37^{+0.07}_{-0.08}(stat.)^{+0.03}_{-0.03}(syst.)$ fm $\Im(d_0) = 0.00^{+0.00}_{-0.02}(stat.)^{+0.00}_{-0.01}(syst.)$ fm

Results on ϕ **-proton**

$$E_B = 14.7 - 56.6 \text{ MeV}$$

Residual strong interaction among charmed hadrons

The residual strong interaction among hadrons is rather well known for NN, less known for YN and barely known for Charmed hadrons-light hadrons combination

Determine the hierarchy of the hadron-hadron coupling for urce sys.) fm ^o 160 180 200 quark flavours

M. He et al, PLB 701 (2011) 445–450

Determine the scattering parameters among charmed hadrons as a tool to study molecular states with charm content

D mesons in Run 2

Relevant sources of background

- 1. Uncorrelated (K⁺ $\pi^{-} \pi^{-}$) background candidates
 - Parametrised from the measured C(k*) computed with D- candidates in the sidebands
- 2. D- from D*- decays (~30% of D-)
 - ➡ p− D*- strong interaction not known, only Coulomb considered
- All these contributions must be considered for the interpretation of the correlation function

ND raw correlation function

 $C_{\exp}(k^*) = \lambda_{pD^-} \times C_{pD^-}(k^*) + \lambda_{p(K^+\pi^-\pi^-)} \times C$

ALICE, arXiv: 2201.05352

$$C_{p(\mathbf{K}^+\pi^-\pi^-)}(k^*) + \lambda_{p\mathbf{D}^{*-}} \times C_{p\mathbf{D}^{*-}}(k^*) + \lambda_{\text{flat}} \times C_{\text{flat}}.$$

- The different λ parameters are extracted from the weight of the side-bands, the evaluated D* contribution and the purity for the D and p reconstruction
- There is no mini-jets background for the $\overline{\mathbf{D}}N$ correlation

π D interaction: fit with Lednický-Lyuboshits formula

Thank you for your attention

