Baryon Spectroscopy: Developing Ideas for Proton Beams at FAIR

Volker Credé

Florida State University, Tallahassee, Florida

QCD Physics with Proton Beams up to 30 GeV at FAIR

Satellite (MESON 2023) Workshop

Kraków, Poland

06/21/2023

Outline

Introduction

- The Nucleon Spectrum
- 2 Spectroscopy of Baryon Resonances
 - N* Spectroscopy: Measurements at GlueX
 - The Study of Strangeness -1 Hyperons
 - Spectroscopy of Ξ Resonances
- 3 Heavy-Flavor Resonances
- Summary and Conclusions

Introduction

Spectroscopy of Baryon Resonances Heavy-Flavor Resonances Summary and Conclusions

Outline

Introduction

- The Nucleon Spectrum
- 2 Spectroscopy of Baryon Resonances
 - N* Spectroscopy: Measurements at GlueX
 - The Study of Strangeness -1 Hyperons
 - Spectroscopy of E Resonances
- 3 Heavy-Flavor Resonances
- 4 Summary and Conclusions

イロト イポト イヨト イヨ

The Nucleon Spectrum

The N^* and Δ^* Spectrum from Lattice QCD

R. Edwards et al., Phys. Rev. D 84, 074508 (2011); Phys. Rev. D 87, 054506 (2013)

Exhibits broad features expected of $SU(6) \otimes O(3)$ symmetry

→ Counting of levels consistent with non-rel. quark model, no parity doubling.

The Nucleon Spectrum

Spectrum of N^{*} Resonances 3000

S. Capstick & N. Isgur, Phys. Rev. D34 (1986) 2809

Volker Credé

Baryon Spectroscopy

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Introduction

Spectroscopy of Baryon Resonances Heavy-Flavor Resonances Summary and Conclusions

The Nucleon Spectrum

 $J^{P}(L_{2I,2J})$

 $1/2^+ (P_{11})$

 $3/2^{-}(D_{13})$

 $1/2^{-}(S_{11})$

 $1/2^{-}(S_{11})$

 $5/2^{-}(D_{15})$

 $5/2^+(F_{15})$

 $3/2^{-}(D_{13})$ $1/2^{+}(P_{11})$

 $3/2^+(P_{13})$

 $3/2^+(P_{13})$

 $7/2^+$ (F₁₇)

 $5/2^+(F_{15})$

 $1/2^+(P_{11})$

 $7/2^{-}(G_{17})$

 $5/2^{+}$

3/2-

 $1/2^{+}$

 $1/2^{-}$

 D_{13}

 S_{11}

 $3/2^{+}$

 $5/2^{-}$

 $3/2^{-}$

 D_{15}

2010

* *

**

ヘロト ヘワト ヘビト ヘビト

* * * *

2020

* *

* *

ی ب ب

* * * *

13/2 -

э

* * * *

V.C. & W. Roberts, Rep. Prog. Phys. 76 (2013)

Volker Credé

Baryon Spectroscopy

Introduction

Spectroscopy of Baryon Resonances Heavy-Flavor Resonances Summary and Conclusions

The Nucleon Spectrum

Spectrum of *N*^{*} **Resonances**

N	(D, L_N^P)	S	J^P	Octet Members				Singlets
0	$(56, 0_0^+)$	$\frac{1}{2}$	$\frac{1}{2}^{+}$	N(939)	$\Lambda(1116)$	$\Sigma(1193)$	$\Xi(1318)$	-
1	$(70, 1_1^-)$	$\frac{1}{2}$	$\frac{1}{2}^{-}$	N(1535)	$\Lambda(1670)$	$\Sigma(1620)$	$\Xi(1690)$	Λ(1405)
		3	1 1 1	N(1520) N(1650)	A(1690) A(1800)	$\Sigma(1670) = \Sigma(1750)$	$\Xi(1820)$	A(1520)
		2	$\frac{2}{3}-$	N(1700)	11(1000)	2(1100)		_
			$\frac{5}{2}^{-}$	N(1675)	$\Lambda(1830)$	$\Sigma(1775)$		-
2	$(56, 0^+_2)$	$\frac{1}{2}$	$\frac{1}{2}^{+}$	N(1440)	$\Lambda(1600)$	$\Sigma(1660)$		-
	$(70, 0^+_2)$	1 2 3	$\frac{1}{2}^{+}_{3+}$	N(1710)	$\Lambda(1810)^{\dagger}$	$\Sigma(1770)^{\dagger}$		
	$(56, 2^+_2)$	2 1 2	$\frac{\frac{3}{2}}{\frac{3}{2}}$ +	$N(1720)^{\dagger}$	$\Lambda(1890)^{\dagger}$	$\Sigma(1840)^{\dagger}$		_
	$(70, 2^+_2)$	1	$\frac{5}{2}^{+}$ $\frac{3}{2}^{+}$	N(1680)	$\Lambda(1820)^{\dagger}$	$\Sigma(1915)^{\dagger}$		-
	() -2)	2	$\frac{\frac{2}{5}}{\frac{2}{2}}$ +	N(1860)				
		$\frac{3}{2}$	$\frac{1}{2}^{+}$	N(1880)				-
			$\frac{3}{2}^{+}_{+}$	$N(1900)^{\dagger}$		$\Sigma(2080)^{\dagger}$		-
			2 7+	N(2000)	A(2110)'	$\Sigma(2070)^{\dagger}$		-
	$(20, 1^+_2)$	1/2	$\frac{1}{2}^{+}$	N(1990) $N(2100)^{\dagger}$	A(2020)	2(2030)		-
		1	$\frac{\tilde{3}}{2}^{+}$	$N(2040)^{\dagger}$				
			$\frac{5}{2}^{+}$	-	-	-	-	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

V.C. & W. Roberts, Rep. Prog. Phys. 76 (2013)

Volker Credé

Baryon Spectroscopy

 N^* Spectroscopy: Measurements at GlueX The Study of Strangeness -1 Hyperons Spectroscopy of \equiv Resonances

Outline

ヘロト ヘ回ト ヘヨト ヘヨト

N[★] Spectroscopy: Measurements at GlueX The Study of Strangeness -1 Hyperons Spectroscopy of Ξ Resonances

N* Spectroscopy at GlueX

GlueX is not the ideal experiment for N^* spectroscopy without a polarized target. However,

- N^* resonances are abundantly produced at $E_{\gamma} > 7$ GeV.
- Interesting program on *N*^{*} physics is possible.

Data selection:

- General cuts to improve overall event kinematics (CL, missing mass, etc.).
- No cuts (yet) to enhance $\gamma p \rightarrow \eta' N(1535)$ production.

Possibly, direct access to $N(1535)\frac{1}{2}$ due to *t*-channel production.

ヘロト ヘアト ヘヨト ヘ

Volker Credé

Baryon Spectroscopy

N[★] Spectroscopy: Measurements at GlueX The Study of Strangeness -1 Hyperons Spectroscopy of Ξ Resonances

N* Spectroscopy at GlueX

Courtesy Edmundo Barriga, FSU

Reaction: $\gamma p \rightarrow p \eta \omega$

Data selection:

- General cuts to improve overall event kinematics (CL, missing mass, etc.).
- 8.2 GeV $< E_{\gamma} <$ 8.8 GeV

● -*t* < 0.6 GeV²

• No cuts (yet) to enhance $\gamma p \rightarrow \omega N(1535)$ production.

Possibly, direct access to $N(1535)\frac{1}{2}$ due to *t*-channel production.

イロト イポト イヨト イヨト

N[★] Spectroscopy: Measurements at GlueX The Study of Strangeness -1 Hyperons Spectroscopy of Ξ Resonances

N(1535) BREIT-WIGNER WIDTH

VALU	E (MeV)	DOCUMENT ID		TECN	COMMENT	
125	to 175 (≈ 150) OUR ESTIM	ATE				
147	± 5	⁶ HUNT	19	DPWA	Multichannel	
163	±25	KASHEVAROV	17	DPWA	$\gamma p \rightarrow \eta p, \eta' p$	
120	± 10	SOKHOYAN	15A	DPWA	Multichannel	
131	±12	⁶ SHKLYAR	13	DPWA	Multichannel	
188.	4± 3.8	⁶ ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$	
240	±80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
120	±20	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
 We do not use the following data for averages, fits, limits, etc. 						
128	± 14	ANISOVICH	12A	DPWA	Multichannel	
141	± 4	⁶ SHRESTHA	12A	DPWA	Multichannel	
182	±25	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$	
129	± 8	PENNER	02C	DPWA	Multichannel	
95	±25	BAI	01B	BES	$J/\psi \rightarrow \rho \overline{\rho} \eta$	
143	± 18	THOMPSON	01	CLAS	$\gamma^* \rho \rightarrow \rho \eta$	

Volker Credé

Baryon Spectroscopy

 N^* Spectroscopy: Measurements at GlueX The Study of Strangeness – 1 Hyperons Spectroscopy of \equiv Resonances

How do we study baryons experimentally?

Light-flavor baryons are typically studied in fixed-target experiments (nuclear physics), heavy-flavor baryons are studied at colliders (high-energy physics).

Fixed-Target Experiments

Photo-/electroproduction, e.g. Jefferson Lab, ELSA, MAMI, etc.

e.g. $\gamma N (e^- N) \rightarrow (e^-) N^* / \Delta^*$ $\gamma N (e^- N) \rightarrow (e^-) K Y^* (Y^{ast} = \Lambda^*, \Sigma^*)$ π / K -induced production, e.g. HADES@GSI, J-PARC

e.g. $\pi N \rightarrow N^*/\Delta^*$

→ pp reactions at FAIR (new idea) ?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2 Collider Experiments

at e^+e^- machines, e.g. BES III, Belle, BaBar, etc.

e.g. $\equiv_c^+ (\Lambda_c^+) \rightarrow [\equiv^- \pi^+]_{\equiv^*} \pi^+ (K^+)$ or $e^+ e^- \rightarrow J/\psi \rightarrow N^* \overline{N}$ at pp machines, e.g. LHC

e.g. $\Xi_b^* \xrightarrow{-} \to \Xi_b^- \pi^+ \pi^-$ (LHCb, CMS)

 N^* Spectroscopy: Measurements at GlueX The Study of Strangeness – 1 Hyperons Spectroscopy of \equiv Resonances

How do we study baryons experimentally?

Light-flavor baryons are typically studied in fixed-target experiments (nuclear physics), heavy-flavor baryons are studied at colliders (high-energy physics).

Fixed-Target Experiments

Photo-/electroproduction, e.g. Jefferson Lab, ELSA, MAMI, etc.

e.g.
$$\gamma N (e^- N) \rightarrow (e^-) N^* / \Delta^*$$

 $\gamma N (e^- N) \rightarrow (e^-) K Y^* (Y^{ast} = \Lambda^*, \Sigma^*)$

 π / K-induced production, e.g. HADES@GSI, J-PARC

e.g. $\pi N \rightarrow N^*/\Delta^*$

→ pp reactions at FAIR (new idea) ?

<ロ> (四) (四) (三) (三) (三) (三)

Collider Experiments

at e^+e^- machines, e.g. BES III, Belle, BaBar, etc.

e.g. $\equiv_c^+ (\Lambda_c^+) \rightarrow [\equiv^- \pi^+]_{\equiv^*} \pi^+ (K^+)$ or $e^+ e^- \rightarrow J/\psi \rightarrow N^* \bar{N}$ at pp machines, e.g. LHC

e.g. $\Xi_b^*{}^- \rightarrow \Xi_b^- \pi^+ \pi^-$ (LHCb, CMS)

 N^* Spectroscopy: Measurements at GlueX The Study of Strangeness – 1 Hyperons Spectroscopy of \equiv Resonances

How do we study baryons experimentally?

Light-flavor baryons are typically studied in fixed-target experiments (nuclear physics), heavy-flavor baryons are studied at colliders (high-energy physics).

Fixed-Target Experiments

Photo-/electroproduction, e.g. Jefferson Lab, ELSA, MAMI, etc.

e.g.
$$\gamma N (e^- N) \rightarrow (e^-) N^* / \Delta^*$$

 $\gamma N (e^- N) \rightarrow (e^-) K Y^* (Y^{ast} = \Lambda^*, \Sigma^*)$

 π / K-induced production, e.g. HADES@GSI, J-PARC

e.g. $\pi N \rightarrow N^*/\Delta^*$

→ pp reactions at FAIR (new idea) ?

ヘロト ヘワト ヘビト ヘビト

2 Collider Experiments

at e^+e^- machines, e.g. BES III, Belle, BaBar, etc.

e.g.
$$\equiv_c^+ (\Lambda_c^+) \rightarrow [\equiv^- \pi^+]_{\equiv^*} \pi^+ (K^+)$$
 or $e^+ e^- \rightarrow J/\psi \rightarrow N^* \bar{N}$
at pp machines, e.g. LHC

e.g. $\Xi_b^* \rightarrow \Xi_b^- \pi^+ \pi^-$ (LHCb, CMS)

 N^* Spectroscopy: Measurements at GlueX The Study of Strangeness – 1 Hyperons Spectroscopy of \equiv Resonances

Spin and Parity Measurement of the $\Lambda(1405)$ Baryon

K. Moriya et al. [CLAS Collaboration], Phys. Rev. Lett. 112, 082004 (2014)

Data for $\gamma p \rightarrow K^+ \Lambda(1405)$ support $J^P = \frac{1}{2}^-$

- Decay distribution of Λ(1405) → Σ⁺π⁻ consistent with J = 1/2.
- Polarization transfer, \vec{Q} , in $Y^* \to Y\pi$:
 - S-wave decay: \vec{Q} independent of θ_Y

Volker Credé Baryon Spectroscopy

 N^* Spectroscopy: Measurements at GlueX The Study of Strangeness – 1 Hyperons Spectroscopy of \equiv Resonances

The $\Lambda(1405)$ Baryons at GlueX

Measurement of the $\Sigma \pi$ photoproduction line shapes near the $\Lambda(1405)$ K. Moriya *et al.* [CLAS Collaboration], Phys. Rev. C **87**, no. 3, 035206 (2013)

More coming from GlueX on $\Lambda(1405) \rightarrow \Sigma^0 \pi^0$

- Fit of (1) two coherent Flatté amplitudes plus
 (2) incoherent Λ(1520), and (3) backgrounds.
- Preliminary fit results support the two-pole structure.

イロト イポト イヨト イヨト

 N^* Spectroscopy: Measurements at GlueX The Study of Strangeness – 1 Hyperons Spectroscopy of \equiv Resonances

The $\Lambda(1405)/\Lambda(1520)$ Baryons at GlueX

- Measurement of the Σπ photoproduction line shapes near the Λ(1405)
 K. Moriya *et al.* [CLAS Collaboration], Phys. Rev. C 87, no. 3, 035206 (2013)
- Measurement of SDMEs in Λ(1520) photoproduction at 8.2 8.8 GeV S. Adhikari *et al.* [GlueX Collaboration], Phys. Rev. C 105, no. 3, 035201 (2022)

Volker Credé

 N^* Spectroscopy: Measurements at GlueX The Study of Strangeness – 1 Hyperons Spectroscopy of \equiv Resonances

Spectroscopy of Excited A* Baryons

First direct mass and width determination for the $\Lambda(1670)$ [Belle Collaboration], Phys. Rev. D **103**, no. 5, 052005 (2021)

A(1670) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
25 to 35 (≈ 30) OUR ESTIMAT	E			
36.1± 2.4±4.8	LEE	21A	BELL	$\Lambda_c^+ \rightarrow \Lambda(1670) \pi^+$
33 ± 4	SARANTSEV	19	DPWA	K N multichannel
29 ± 5	ZHANG	13A	DPWA	K N multichannel
34.1± 3.7	KOISO	85	DPWA	$K^- \rho \rightarrow \Sigma \pi$
29 ± 5	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
29 ± 5	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
46 ± 5	HEPP	76B	DPWA	$K^- N \rightarrow \Sigma \pi$
40 ± 3	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
19 ± 5	PREVOST	74	DPWA	$K^- N \rightarrow \Sigma(1385) \pi$
• • • We do not use the following	data for average	s, fits,	limits, e	tc. • • •
23 ± 6	MANLEY	02	DPWA	K N multichannel
21.1± 3.6	ABAEV	96	DPWA	$K^- p \rightarrow \Lambda \eta$
45 ±10	GOPAL	77	DPWA	K N multichannel
12	¹ MARTIN	77	DPWA	KN multichannel

 $^1\,\mathrm{MARTIN}$ 77 obtains identical resonance parameters from a T-matrix pole and from a Breit-Wigner fit.

all PDG listings based on PWA

< 🗇 🕨

Volker Credé

 N^* Spectroscopy: Measurements at GlueX The Study of Strangeness – 1 Hyperons Spectroscopy of \equiv Resonances

Spectroscopy of Excited A* Baryons

First direct mass and width determination for the $\Lambda(1670)$ [Belle Collaboration], Phys. Rev. D **103**, no. 5, 052005 (2021)

Resonances	Mass $[MeV/c^2]$	Width [MeV]
$\Lambda(1670)$	$1674.3 \pm 0.8 \pm 4.9$	$36.1 \pm 2.4 \pm 4.8$
$\Sigma(1385)^{+}$	$1384.8 \pm 0.3 \pm 1.4$	$38.1 \pm 1.5 \pm 2.1$

all PDG listings based on PWA

< 🗇 🕨

 N^* Spectroscopy: Measurements at GlueX The Study of Strangeness -1 Hyperons Spectroscopy of \equiv Resonances

Spectrum of *N*^{*} **Resonances**

V. C. & W.	Roberts,	Rep.	Prog.	Phys.	76	(2013)	
------------	----------	------	-------	-------	----	--------	--

Volker Credé

$N \mid (D, L_N^P) \mid S \mid J^P \mid \qquad \text{Octet Members}$	Singlets
$0 (56, 0_0^+) \frac{1}{2} \frac{1}{2}^+ N(939) \Lambda(1116) \Sigma(1193) \Xi(131)$.8) -
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\Lambda(1405) = \Lambda(1405)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1520) A(1520)
$\frac{3}{2}^{-}$ N(1700)	-
$\left \frac{5}{2} \right N(1675) \left \Lambda(1830) \right \Sigma(1775) \right $	-
2 $ (56, 0^+_2) \frac{1}{2} \frac{1^+}{2} N(1440) \Lambda(1600) \Sigma(1660) $	-
$(70, 0_2^+) \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{vmatrix} N(1710) \land (1810)^\dagger \Sigma(1770)^\dagger$	
(r_{0}, o^{\pm}) $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 3^{\pm} \end{bmatrix}$ $V(1700)^{\pm}$ $A(1000)^{\pm}$ $\nabla(1040)^{\pm}$	-
$\begin{pmatrix} (50, Z_2) \\ 2 \\ 5^+ \\ 5^+ \\ N(1680) \\ \Lambda(1890)^{\dagger} \\ \Sigma(1015)^{\dagger} \\ \Sigma(1015)^{\dagger} \\ \end{pmatrix}$	
$(70, 2^+_2)$ $\frac{1}{2}$ $\frac{2}{3^+}$ (1000) $\Lambda(1020)$ $\Sigma(1910)$	
$\frac{5}{2}^+$ N(1860)	
$\frac{3}{2}$ $\frac{1}{2}^+$ N(1880)	-
$\frac{3^+}{2}$ N(1900) [†] $\Sigma(2080)^†$	-
$\frac{5^+}{2}$ N(2000) $\Lambda(2110)^{\dagger}$ $\Sigma(2070)^{\dagger}$	-
$(2000)^{\dagger}$ $\Lambda(2020)$ $\Sigma(2030)^{\dagger}$	-
$\begin{pmatrix} (20, 1_2^+) & \frac{1}{2} & \frac{1}{2} & N(2100)^{\dagger} \\ 3^+ & N(20, 0)^{\dagger} \end{pmatrix}$	
$\begin{vmatrix} \frac{2}{5} \\ \frac{5}{2} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	

イロト 不得 とくほと くほとう

₹ 990

Baryon Spectroscopy

 N^* Spectroscopy: Measurements at GlueX The Study of Strangeness -1 Hyperons Spectroscopy of \equiv Resonances

The Ξ^* and Ω^* Spectrum from Lattice QCD

Exhibits broad features expected of $SU(6) \otimes O(3)$ symmetry

→ Counting of states of each flavor and spin consistent with QM for the lowest negative- and positive-parity bands.

 N^* Spectroscopy: Measurements at GlueX The Study of Strangeness -1 Hyperons Spectroscopy of \equiv Resonances

CLAS g11a: Excited States in $\gamma p \rightarrow K^+ K^+ \pi^- (X)$

From the paper: Although a small enhancement is observed in the $\Xi^0 \pi^-$ invariant mass spectrum near the controversial 1-star $\Xi^-(1620)$ resonance, it is not possible to determine its exact nature without a full partial wave analysis. Phys. Rev. C **76**, 025208 (2007)

Need high-statistics, high-energy data from an experiment designed to see Ξ states:

- 3- or 4-track trigger
- Reconstruction of full decay chain
- Higher photon energy
- Improved detectors
- → CLAS 12 and GlueX at Jefferson Lab

イロト イポト イヨト イヨト

 N^* Spectroscopy: Measurements at GlueX The Study of Strangeness -1 Hyperons Spectroscopy of \equiv Resonances

CLAS g11a: Excited States in $\gamma p \rightarrow K^+ K^+ \pi^- (X)$

From the paper: Although a small enhancement is observed in the $\Xi^0 \pi^-$ invariant mass spectrum near the controversial 1-star $\Xi^-(1620)$ resonance, it is not possible to determine its exact nature without a full partial wave analysis. Phys. Rev. C **76**, 025208 (2007)

Need high-statistics, high-energy data from an experiment designed to see Ξ states:

- 3- or 4-track trigger
- Reconstruction of full decay chain
- Higher photon energy
- Improved detectors
- → CLAS 12 and GlueX at Jefferson Lab

 $\Xi_c^+ \to (\Xi^- \pi^+)_{\Xi^*} \pi^+ \quad \Rightarrow$

Introduction Spectroscopy of Baryon Resonances Heavy-Flavor Resonances

N* Spectroscopy: Measurements at GlueX Spectroscopy of Ξ Resonances

The Ξ^* Spectrum in a Dyson-Schwinger Approach

C. Fischer et al., PoS Hadron 2017 (2018) 007

Ξ(1320) ****	$\rightarrow \Lambda \pi$	$I\left(J^{P}\right) = \frac{1}{2}\left(\frac{1}{2}^{+}\right)$
Ξ(1530) ****	$\rightarrow \equiv \pi$	$I\left(J^{P}\right) = \frac{1}{2}\left(\frac{3}{2}^{+}\right)$
Ξ(1620) *	$\rightarrow \equiv \pi$?	$I(J^P) = \frac{1}{2} \left(\frac{1}{2}^+ \text{ or } \frac{1}{2}^+\right)$
Ξ(1690) ***		$I\left(J^{P}\right) = \frac{1}{2}\left(\frac{1}{2}^{-}?\right)$
Ξ(1820) ***	$\rightarrow \Lambda \overline{K}$	$I\left(J^{P}\right) = \frac{1}{2}\left(\frac{3}{2}^{-}\right)$
Ξ(1950) ***		$I\left(J^{P}\right) = \frac{1}{2}\left(\frac{3}{2}^{-}?\right)$
Ξ(2030) ***	$\rightarrow Y\overline{K}$	$I\left(J^{\mathcal{P}}\right) = \frac{1}{2} \left(\geq \frac{5}{2}^{?} \right)$

늒

 $\frac{3}{2}^{+}$

 $\frac{3}{2}$

Volker Credé Baryon Spectroscopy

 N^* Spectroscopy: Measurements at GlueX The Study of Strangeness -1 Hyperons Spectroscopy of \equiv Resonances

The Ξ^* Spectrum in a Dyson-Schwinger Approach

C. Fischer et al., PoS Hadron 2017 (2018) 007

Volker Credé Baryon Spectroscopy

 N^* Spectroscopy: Measurements at GlueX The Study of Strangeness -1 Hyperons Spectroscopy of \equiv Resonances

Possible Production Mechanisms

 $K^{+}(\Xi^{-}K^{+}), \ K^{+}(\Xi^{0}K^{0}), \ K^{0}(\Xi^{0}K^{+})$

→ Cross sections, beam asymmetries (similar to $p \pi \pi \& p KK^*$)

At other facilities (for comparison):

${\cal K}^- ho ightarrow {\cal K}^+ \Xi^{*-}$	J-PARC (2029?)
${\it K}_L p ightarrow {\it K}^+ \Xi^{*0}$	Hall D (2026/30?)
$pp ightarrow \Xi^* X$	LHCb
$\overline{p} p o \Xi^* \overline{\Xi}$	$\overline{P}ANDA?$
$e^+ e^- ightarrow \Xi^* X$	Belle II, BES III

* W. Roberts et al., Phys. Rev. C 71, 055201 (2005)

 N^* Spectroscopy: Measurements at GlueX The Study of Strangeness -1 Hyperons Spectroscopy of \equiv Resonances

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Possible Production Mechanisms

Courtesy of Jesse Hernandez, Chandra Akondi (FSU)

N* Spectroscopy: Measurements at GlueX Spectroscopy of Ξ Resonances

GlueX: Cross Sections in $\gamma p \rightarrow K^+ K^+ \Xi (1320)^-$

Volker Credé

$\frac{10}{\text{dt}}(\gamma p \to K^+ K^+ \Xi^-) (\text{nb})$ ---- CLAS Data GlueX Phase-I GLU Preliminary 8 10 12 6 E_v (GeV) Courtesy of Jesse Hernandez (FSU)

[CLAS Collaboration], Phys. Rev. C 98 (2018) 6, 062201

Measurements of

- Differential cross sections
- Polarization observables
- Mass, width, spin
- Band denotes current systematic uncertainties, not final.

ヘロト ヘワト ヘビト ヘビト

Baryon Spectroscopy

 N^* Spectroscopy: Measurements at GlueX The Study of Strangeness -1 Hyperons Spectroscopy of \equiv Resonances

160

 $\overline{K}{}^{0} p \rightarrow K^{+} \Xi^{0}$

GlueX - 10 d

Opportunities with Secondary K_L^0 Beams in Hall D

Possible reactions to be studied (elastic and charge-exchange reactions):

- 2- & 3-body reactions producing S = -1 hyperons
- 2-body reactions producing S = -2 hyperons
 → K⁰_ℓ p → K⁺ Ξ⁰; π⁺K⁺ Ξ⁻; K⁺ Ξ^{0*}; π⁺K⁺ Ξ^{-*}

Volker Credé

Baryon Spectroscopy

Outline

3

ヘロト ヘアト ヘヨト ヘ

Peak Hunting for Heavy-Flavor States

https://www.nikhef.nl/ pkoppenb/particles.html

Volker Credé

Baryon Spectroscopy

(A) (E) (A) (E)

э

Doubly-Heavy (Charmed) Resonances

2017: The LHCb (Large Hadron Collider beauty) collaboration at CERN's Large Hadron Collider in Switzerland has reported the observation of a doubly charmed particle, $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$.

Outline

3

ヘロト ヘアト ヘビト ヘ

Open Issues in (Light) Baryon Spectroscopy

- What are the relevant degrees of freedom in (excited) baryons?
 - Can the high-mass states be described by the dynamics of three flavored quarks? To what extent are diquark correlations, gluonic modes or hadronic degrees of freedom important in this physics?
- Can we identify unconventional states in the strangeness sector, e.g. a Λ(1405) or N(1440)? What is the situation with the (20, 1⁺₂)?
- What is the nature of non-quark contributions, e.g. meson-baryon cloud or dynamically-generated states?
 - Probe the running quark mass and determine the relevant degrees of freedom at different distance scales.
- How do nearly massless quarks acquire mass? (as predicted in DSE and LQCD)

< 🗇

Open Issues in (Light) Baryon Spectroscopy

- What are the relevant degrees of freedom in (excited) baryons?
 - → Can the high-mass states be described by the dynamics of three flavored quarks? To what extent are diquark correlations, gluonic modes or hadronic degrees of freedom important in this physics?
- Can we identify unconventional states in the strangeness sector, e.g. a Λ(1405) or N(1440)? What is the situation with the (20, 1⁺₂)?
- What is the nature of non-quark contributions, e.g. meson-baryon cloud or dynamically-generated states?
 - Probe the running quark mass and determine the relevant degrees of freedom at different distance scales.
- How do nearly massless quarks acquire mass? (as predicted in DSE and LQCD)

Summary and Conclusions

A "low"-energy *p* beam on a fixed target would be a novel spectroscopy tool:

- Photoproduction at 8 9 GeV seems to be able to produce isolated N* peaks in *t*-channel prroduction. Would this be possible in *pp* reactions? (certainly not a selling point for a new facility).
- Spectroscopy of Λ* and Σ* resonances ideal for K_L and K⁻ beam facilities. Jefferson Lab, J-PARC, and FAIR appear to have a similar timeline, i.e. first physics runs around 2027/2028.

J-PARC also plans to study $\boldsymbol{\Omega}$ and charmed baryons.

- Spectroscopy of (low-mass) Ξ resonances important to understand the systematics of the baryon spectrum.
 - 1. What about the $\Xi(1620) / \Xi(1690)$ states?

2. Is $\Xi(1620)$ the doubly strange partner of the $\Lambda(1405)$?

→ Selling point for hadron spectroscopy with proton beams is charmonium production & study of hyperons in decay of excited charmed hadrons, e.g. in the reaction $pp \rightarrow \Lambda_c^+ p \bar{D}^0$.