Introduction	Intrinsic charm mechanism	Fixed-target experiments	Recombination mechanism	Summary

Open charm production at low energies

Rafał Maciuła

Institute of Nuclear Physics PAN, Kraków, Poland

in collaboration with A. Szczurek

based on: Phys.Rev.D 102 (2020) 1, 014028; J. High Energy Phys. 10 (2020) 135 Phys.Rev.D 105 (2022) 1, 014001; Phys.Lett.B 835 (2022) 137530

> Physics opportunities with proton beams at SIS100 21st June 2023, Krakow, Poland

Introduction ●0000	Intrinsic charm mechanism 00000	Fixed-target experiments	Recombination mechanism	Summary O

Far-forward charm production at high energies

- an interplay of small- and large-x effects
- probing parton densities simultaneously at extremely small $(x < 10^{-6})$ and large (x > 0.1) longitudinal momentum fractions

• gluon saturation, intrinsic charm content of the nucleon, recombination mechanism

 forward hadronization (subleading fragmentation, color reconnection, beyond leading color strings, etc.)

Experiments connected to forward charm production at the LHC and beyond:

- Forward Physics Facilities (FPF) at the LHC: (FASERν, FASERν2, SND@LHC, FLArE): ν_e, ν_μ, ν_τ neutrino fluxes
- IceCube Neutrino Observatory: prompt ν_{μ} neutrino flux

Introduction	Intrinsic charm mechanism	Fixed-target experiments	Recombination mechanism	Summary
00000	00000		00	0

Forward charm production at low energies

- rather large-x effects
- probing parton densities simultaneously at rather intermediate ($x\gtrsim 10^{-3}$) and large ($x\gtrsim 0.1$) longitudinal momentum fractions

gluon saturation, intrinsic charm content of the nucleon, recombination mechanism

 forward hadronization (subleading fragmentation, color reconnection, beyond leading color strings, etc.)

Experiments connected to forward charm production at lower energies:

- fixed-target LHCb mode: D-meson, J/Ψ -meson at $\sqrt{s} = 86.6$ GeV and 68.5 GeV
- fixed-target SHIP experiment at SPS: $u_{ au}$ neutrino flux $\sqrt{s} = 27.4$ GeV
- fixed-target NA69/DsTau experiment at SPS: ν_{τ} neutrino flux $\sqrt{s} = 27.4$ GeV

3/17

Introduction 00000 Intrinsic charm mechanism

Fixed-target experiments

Recombination mechanism

Summary 0

QCD charm production mechanisms at forward directions

- g^{*}g^{*} → cc̄ ⇒ the standard QCD mechanism (and usually considered as a leading) of gluon-gluon fusion with off-shell initial state partons, calculated both in the full k_T-factorization approach and in the hybrid model
- g^{*} c → gc ⇒ the mechanism driven by the intrinsic charm component of proton calculated in the hybrid approach with off-shell initial state gluon and collinear intrinsic charm quark
- gq → Dc ⇒ the recombination mechanism calculated in the leading-order collinear approach

Introduction Intrinsic charr 00000 00000

Intrinsic charm mechanism

Fixed-target experiments

Recombination mechanism

Summary 0

The k_T -factorization (high-energy factorization) approach

off-shell initial state partons \Rightarrow

initial transverse momenta explicitly included $k_{1,t}$, $k_{2,t} \neq 0$

- additional hard dynamics coming from transverse momenta of incident partons (virtualities taken into account)
- very efficient for less inclusive studies of kinematical correlations
- more exclusive observables, e.g. pair transverse momentum or azimuthal angle very sensitive to the incident transverse momenta

multi-differential cross section:

$$\frac{d\sigma}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}} = \int \frac{d^2 k_{1,t}}{\pi} \frac{d^2 k_{2,t}}{\pi} \frac{1}{16\pi^2 (x_1 x_2 s)^2} \frac{|\mathcal{M}_{g^*g^* \to Q\bar{Q}}|^2}{|\mathcal{M}_{g^*g^* \to Q\bar{Q}}|^2} \times \delta^2 \left(\vec{k}_{1,t} + \vec{k}_{2,t} - \vec{p}_{1,t} - \vec{p}_{2,t}\right) \mathcal{F}_g(x_1, k_{1,t}^2, \mu) \mathcal{F}_g(x_2, k_{2,t}^2, \mu)$$

• the LO off-shell matrix elements $\overline{|\mathcal{M}_{g^*g^* \to Q\bar{Q}}|^2}$ available (analytic form)

• the 2 \rightarrow 3 and 2 \rightarrow 4 processes (higher-order) only at tree-level (KaTie Monte Carlo) • $\mathcal{F}_g(x, k_t^2, \mu)$ - transverse momentum dependent - unintegrated PDFs (uPDFs)

 part of higher-order (real) corrections might be effectively included in uPDF

Forward open charm production at the LHCb

Open charm LHCb data in *pp*-scattering at $\sqrt{s} = 7$, 13 TeV:

Detector acceptance: 2.0 < y < 4.5 and $0 < p_T < 8$ GeV

- inclusive *D*-meson spectra and *DD*-pair correlation observables (*M_{inv}*, Δφ, *p_T*-pair)
- longitudinal momentum fractions probed: $10^{-3} < x_1 < 10^{-1}$ and $10^{-5} < x_2 < 10^{-3}$
- p_T -differential cross section well described in different y-bins
- correct shapes of the correlation observables

(R.M., A. Szczurek, Phys.Rev.D 100 (2019) 5, 054001)

Introduction 00000 Intrinsic charm mechanism •0000 Fixed-target experiments

Recombination mechanism

Summary O

Charm production driven by the intrinsic charm

What if there is a non-perturbative charm content of the proton?

The charm quark in the initial state \Rightarrow

- perturbative: extrinsic charm (from gluon splitting)
- non-perturbative: intrinsic charm (IC)
- the differential cross section for $cg^* \rightarrow cg$ mechanism:

$$d\sigma_{pp \to charm}(cg^* \to cg) = \int dx_1 \int \frac{dx_2}{x_2} \int d^2k_t$$
$$\times c(x_1, \mu^2) \cdot \mathcal{F}_g(x_2, k_t^2, \mu^2) \cdot d\hat{\sigma}_{cg^* \to cg}$$

• $d\hat{\sigma}_{cg^* \rightarrow cg} \Rightarrow$ only in the massless limit (also available in KaTie)

- phenomenological regularization needed at $p_T \rightarrow 0 \Rightarrow$ we use PYTHIA prescription: $F_{sup}(p_T) = \frac{p_T^2}{p_{T0}^2 + p_T^2}$, $\alpha_S(\mu_R^2 + p_{T0}^2)$, where $p_{T0} = 1.5$ GeV (free parameter)
- the charm quark PDF with IC content is taken at the initial scale: $c(x_1, \mu_0^2)$, where $\mu_0 = 1.3$ GeV so the perturbative charm contribution is intentionally not taken into account

The concept of intrinsic charm in the nucleon

The intrinsic charm quarks \Rightarrow multiple connections to the valence quarks of the proton

strong evidence for internal strangeness and somewhat smaller for internal charm

- dfferent pictures of non-perturbative *cc* content:
 - sea-like models
 - valence-like models
- we use the IC distributions from the Brodsky-Hoyer-Peterson-Sakai (BHPS) model as adopted in the CT14nnIoIC PDF

- the presence of an intrinsic component implies a large enhancement of the charm distribution at large x (>0.1) in comparison to the extrinsic charm prediction
- the models do not allow to predict precisely the absolute probability P_{ic}

xc(x,Q), comparison

Introduction 00000 Intrinsic charm mechanism

Fixed-target experiments

Recombination mechanism

Summary O

Intrinsic charm at the LHC and beyond

A possible impact of the intrinsic charm component on the forward charm particle production in already existing or future experiments at different energies:

• FASER at the LHC (dedicated to a measurement of forward neutrinos originating from semileptonic decays of *D* mesons)

- the intrinsic charm important at |y| > 6
- transverse momentum distribution visibly enhanced

Introduction 00000	Intrinsic charm mechanism ०००●०	Fixed-target experiments	Recombination mechanism	Summary 0

Intrinsic charm at the LHC and beyond

A possible impact of the intrinsic charm component on the forward charm particle production in already existing or future experiments at different energies:

• Fixed-target LHCb mode at $\sqrt{s} = 86.6$ GeV (*D*-meson production)

• at the lower energy \Rightarrow the intrinsic charm important already at |y| > 1

Introduction Intrinsic charm mechanism

Fixed-target experiments

Recombination mechanism

Summary O

Intrinsic charm at the LHC and beyond

A possible impact of the intrinsic charm component on the forward charm particle production in already existing or future experiments at different energies:

• SHIP/DsTau at the SPS CERN at $\sqrt{s} = 27.4$ GeV (dedicated to a measurement of forward ν_{τ} neutrinos originating from semileptonic decays of D_s mesons)

at the lower energy ⇒ the intrinsic charm important in the whole rapidity spectrum
 transverse momentum distribution visibly enhanced

Introduction	Intrinsic charm mechanism	Fixed-target experiments	Recombination mechanism	Summary
00000	00000	●00	00	0

Fixed-target charm data: Intrinsic Charm

The fixed-target data on forward open charm meson production already exists:

• Fixed-target LHCb mode at $\sqrt{s} = 86.6$ GeV (*D*-meson production)

- some problems with understanding the LHCb fixed-target open charm data identified
- only upper limits of theoretical predictions (based on different approaches) can describe the data
- <u>different sources of uncertainties</u>: charm quark mass, details of the fragmentation procedure, renormalization and factorization scales, etc.

Introduction	Intrinsic charm mechanism	Fixed-target experiments	Recombination mechanism	Summary
00000	00000	000	00	

Fixed-target charm data: Intrinsic Charm

The fixed-target data on forward open charm meson production already exists:

• Fixed-target LHCb mode at $\sqrt{s} = 86.6$ GeV (*D*-meson production)

- some problems with understanding the LHCb fixed-target open charm data identified
- a new scenario proposed with the intrinsic charm contribution needed to describe the data points in the backward direction and at larger p_T 's
- $\chi^2_{\rm min}$: $P_{ic} \sim 1.65\%$ but large uncertainties

Fixed-target charm data: Intrinsic Charm

The fixed-target data on forward open charm meson production already exists:

• Fermilab (1986): D-meson production in pp-scattering at $\sqrt{s} = 38.7$ GeV

• we obtain a very good description of the *x_F*-distribution within our model with the same set of parameters as in the LHCb case

the intrinsic charm component crucial for large-x_F data

Introduction 00000

The $c\bar{q}$ -recombination mechanism of charm production

Braaten-Jia-Mechen (BJM) recombination: $q + g \rightarrow (\bar{c}q)^n + c$

- short-distance process (in contrast with fragmentation)
- $(\bar{c}q)^n$: q has small momentum in the \bar{c} rest frame
- q and c
 are in a state with definite color and angular momentum quantum numbers specified by n
- direct meson: $qg
 ightarrow ar{D}c$ and $ar{q}g
 ightarrow Dar{c}$
- subsequent fragmentation of the associated c-quark
- the direct recombination leads to D/\bar{D} production asymmetry

• the differential cross section for $qg \rightarrow \bar{D}c$ mechanism: $\frac{d\sigma}{dy_1 dy_2 d^2 p_t} = \frac{1}{16\pi^2 \hat{s}^2} [x_1 q_1(x_1, \mu^2) x_2 g_2(x_2, \mu^2)] \overline{\mathcal{M}_{qg \rightarrow \bar{D}c}(s, t, u)|^2} + x_1 g_1(x_1, \mu^2) x_2 q_2(x_2, \mu^2)] \overline{\mathcal{M}_{gq \rightarrow \bar{D}c}(s, t, u)|^2}]$

• $\overline{|\mathcal{M}_{qg \to Dc}(s, t, u)|^2} = \overline{|\mathcal{M}_{qg \to (\bar{c}q)^n c}|^2} \cdot \rho$

• $\overline{|\mathcal{M}_{qg \to (\bar{c}q)^n c}|^2} \Rightarrow$ explicit form of the matrix element squared available

- ρ can be interpreted as a probability to form real meson
 ⇒ can be extracted from experimental data
 - e.g. fixed-target LHCb data on D/\bar{D} production asymmetry!

Introduction 00000 Intrinsic charm mechanism

Fixed-target experiments

Recombination mechanism $\circ \bullet$

Fixed-target charm data: Intrinsic Charm + Recombination

\Leftarrow the rapidity distribution for D^0 -meson:

- there is a room for the recombination mechanism with $\rho = 10\%$ together with the intrinsic charm contribution with $P_{IC} = 1.0\%$
- ↓ very recent LHCb fixed-target data on the D⁰/D⁰ production asymmetry: arXiv:2211.11633 [hep-ph]
 - $\bullet\,$ our predictions consistent with the LHCb data taking $\rho=10\%!$

16 / 17

Introduction 00000	Intrinsic charm mechanism 00000	Fixed-target experiments	Recombination mechanism	Summary •
Conclu	sions			

We have shown that **the intrinsic charm** and **the recombination** mechanisms can be extremely important for **forward charm production** at energies much lower than the nominal LHC energies:

D-meson at fixed-target LHCb experiments

- a scenario proposed with the intrinsic charm contribution needed to describe the data points in the backward direction and at larger p_T 's
- extract the intrinsic charm probability $P_{IC}~(\lesssim 1\%)$
- still a room for recombination mechanism
- the recombination probability from D/\overline{D} -production asymmetry (pprox 10%)

Thank You!

Backup Slides

Charm cross section in QCD

The basic ingredient for the prompt neutrino flux \Rightarrow pQCD charm quark production

• the leading-order (LO) partonic processes for $Q\overline{Q}$ production \Rightarrow $q\overline{q}$ -annihilation and gluon-gluon fusion (dominant at high energies)

• main classes of the next-to-leading order (NLO) diagrams:

pair creation with gluon emission flavour excitation

gluon splitting

collinear approach:

- state of the art for single particle spectra at NLO (FONLL, GM-VFNS)
- MC@NLO+PS for correlations
- NNLO not available for charm/bottom

the NLO and the NNLO corrections of a special importance for charm p_{T} -differential cross section!

*k***_T-factorizaton** (high-energy factorization):

- exact kinematics from the very beginning
- correlation observables directly calculable
- some contributions even beyond the NLO available (also differentially)

prompt neutrino flux \Rightarrow high energy limit and far-forward charm production

Unintegrated parton distribution functions (uPDFs)

Transverse momentum dependent PDFs: $\mathcal{F}_g(x, k_t^2, \mu)$

- CCFM evolution: Jung-Hautmann (JH2013)
- Parton Branching + DGLAP: Bermudez Martinez-Connor-Jung-Lelek-Zlebcik
- Iinear/nonlinear BK (saturation): Kutak-Sapeta (KS)
- modified DGLAP-BFKL: Kimber-Martin-Ryskin-Watt (KMR, MRW)
- modified BFKL-DGLAP: Kwieciński-Martin-Staśto (KMS)
- hard emissions from the uPDF ⇒ resummation of higher-order corrections
- k_T-fact. g*g* → cc̄ + KMR uPDF works very well for inclusive open charm and bottom mesons at th LHC (as well as for correlation observables)
- saturation effects possible to be studied within the KS uPDF
- open charm at the LHC: small-x and small/intermediate scales

 $F(x,k,\mu)$ JH-2013-set2 (solid) PB-NLO-set1 (short-dashed) KMR-CT14lo (long-dashed) KShard-2013-linear (long-dash-dotted) KShard-2013-nonlinear (dash-dot-dotted) 10 10 ŝ MDplotter 2. 10 1111 10 10^{-1} 1 10 k, [GeV]

gluon, x = 0.0001, $\mu = 3 \text{ GeV}$

Moving more forward: The hybrid factorization

How to treat theoretically the asymmetric configuration?

The hybrid approach for far-forward production \Rightarrow

- combined collinear- and k_T-factorization
- used in many phenomenological studies
- the differential cross section for $gg^* \to c\bar{c}$ mechanism:

$$\begin{split} d\sigma_{pp \to charm}(gg^* \to c\bar{c}) &= \int dx_1 \int \frac{dx_2}{x_2} \int d^2 k_t \\ &\times g(x_1, \mu^2) \cdot \mathcal{F}_g(x_2, k_t^2, \mu^2) \cdot d\hat{\sigma}_{gg^* \to c\bar{c}} \end{split}$$

- g(x₁, µ²) ⇒ collinear large-x gluon we use the CT14nnlo PDF
- $\mathcal{F}_g(x_2, k_t^2, \mu^2) \Rightarrow$ off-shell small-x gluon we use the KMR/MRW and the KS linear/nonlinear uPDFs
- dôgg* → cc
 is the hard partonic cross section obtained from a gauge invariant off-shell tree-level amplitudes (available in KaTie)
- a derivation of the hybrid factorization from the dilute limit of the Color Glass Condensate approach can be found in the literature

The quark to meson transition

Heavy quark to open heavy meson fragmentation: $c \rightarrow D$ and $\bar{c} \rightarrow \overline{D}$

The independent parton fragmentation picture:

• the charmed meson x_F -distributions at large x_F can be obtained from the charm quark/antiquark x_F^c -distributions as:

$$\frac{d\sigma_{pp\to D}(x_F)}{dx_F} = \int_{x_F}^1 \frac{dz}{z} \frac{d\sigma_{pp\to charm}(x_F^c)}{dx_F^c} D_{c\to D}(z),$$

- where $x_F^c = x_F/z$ and $D_{c \to D}(z)$ is the relevant fragmentation function (FF)
- the fragmentation procedure leads to a decrease of the x_F range for meson with respect to x^c_F of the parent quark

Intrinsic charm at the LHC and beyond

A possible impact of the intrinsic charm component on the forward charm particle production in already existing or future experiments at different energies:

• Future Circular Collider (FCC) (*D*-meson production)

- the intrinsic charm important at |y| > 7
- transverse momentum distribution visibly enhanced

The $c\bar{q}$ -recombination mechanism of charm production

- both IC and recombination negligible at the LHCb in collider mode: $\sqrt{s} = 13$ TeV, 2 > y > 4.5
- situation changes when approaching larger rapidities
- y > 6: IC dominates over the standard mechanism
- •
- y > 6: recombination and the standard mechanism of similar size

Kinematics probed with the IceCube prompt neutrino flux

Mapping the dominant regions of the phase space associated with $c\bar{c}$ -pair production relevant for the **prompt flux at IceCube**

(V.P. Goncalves, R.M., R. Pasechnik, A. Szczurek, Phys.Rev.D 96 (2017) 9, 094026)

• recent: up to $E_{\nu} = 3 \cdot 10^6$ GeV \Rightarrow the LHC energy range

• future: $E_{
u} > 10^7 \; {
m GeV} \Rightarrow$ energy range beyond that probed in the LHC Run2

flux sensitive to the p_T < 5 GeV</p>

Kinematics probed with the IceCube prompt neutrino flux

Mapping the dominant regions of the phase space associated with $c\bar{c}$ -pair production relevant for the **prompt flux at IceCube**

(V.P. Goncalves, R.M., R. Pasechnik, A. Szczurek, Phys.Rev.D 96 (2017) 9, 094026)

- projectile: 0.2 < x₁ < 0.6</p>
- target: $10^{-6} < x_2 < 10^{-5}$ (IceCube recently) and even $10^{-8} < x_2 < 10^{-5}$ (future)
- far-forward production beyond the LHC range ⇒ very asymmetric kinematics

Predictions of our model for charm x_F -distributions

- when intrinsic charm is included the behavior of the x_F-distribution is strongly modified in the 0.03 \leq x_F \leq 0.6 range
- the Feynman x_F -distribution for large x_F is dominated by the $cg^* \rightarrow cg$ mechanism with intrinsic charm
- our predictions for the standard charm production mechanism obtained with the hybrid model are consistent with the NLO collinear calculations by FONLL

Prompt neutrino fluxes and saturation effects

- sum of both production mechanisms: gg*-fusion and the cg* with IC BHPS 1%
- the KMR and KS linear predictions are similar \Rightarrow BFKL effects not important for lceCube (which probes $0.2 < x_F < 0.5$)
- the KS nonlinear is a factor \approx 3 smaller for $x_F = 0.2$ \Rightarrow saturation effects strongly modifies the magnitude of the distribution

Predictions and IceCube limits including saturation

- within the saturation scenario the impact of the prompt flux driven by the gluon-gluon fusion mechanism is even smaller and becomes negligible
- nonlinear QCD dynamics $\Rightarrow P_{ic} \le 2.0\%$
- slightly higher than the central CT14nnloIC PDF set

IceCube: Prompt neutrino fluxes and intrinsic charm

- intrinsic charm very important
- extrinsic charm negligible
- the inclusion of the cg^{*} → cg mechanism driven by the intrinsic charm (IC) has a strong effect on the prompt neutrino flux
- the flux is enhanced by one order of magnitude when intrinsic charm is present $(P_{ic} = 1\%$ here)

IceCube: Predictions and limits for intrinsic charm

- the impact of the prompt flux is small in the current kinematical range probed by IceCube as long as only the gluon-gluon fusion mechanism is taken into account
- the intrinsic charm mechanism implies a large enhancement of the prompt flux at large E_ν, with the associated magnitude being dependent on the value of P_{ic}
- linear QCD dynamics $\Rightarrow P_{ic} \le 1.5\%$
- similar to the central CT14nnloIC PDF set

FASER ν 2: Far-forward neutrino fluxes

Semileptonic decays of $D^0, D^+, \Lambda_c \Rightarrow$ source of ν_e, ν_μ

- $E_{\nu} > 100 \text{ GeV} \Rightarrow \text{intrinsic charm and recombination}$ larger than standard mechanism
- both IC and recombination of similar size
- ν_{μ} : large backgrounds from π and K
 - \Rightarrow IC and recombination completely covered even at large energies
- ν_{e} : large background from K but \Rightarrow both IC and recombination win at $E_{\nu} > 1000 \text{ GeV}$

FASER ν 2: Far-forward neutrino fluxes

 D_s^+ meson decays \Rightarrow dominant source of $u_{ au}$

- direct $D^+_s o au^+
 u_ au$ and chain $D^+_s o au^+ o \overline{
 u}_ au$ decays
- no background from light mesons due to limited phase space for τ production in the D_s decay
- $s(x) \ll u_{val}(x), d_{val}(x) \Rightarrow$ recombination reduced
- $E_{\nu} > 100 \text{ GeV} \Rightarrow$ intrinsic charm larger than standard mechanism
- Ilux dominated by intrinsic charm
- optimal to pin down the IC contribution in the nucleon

