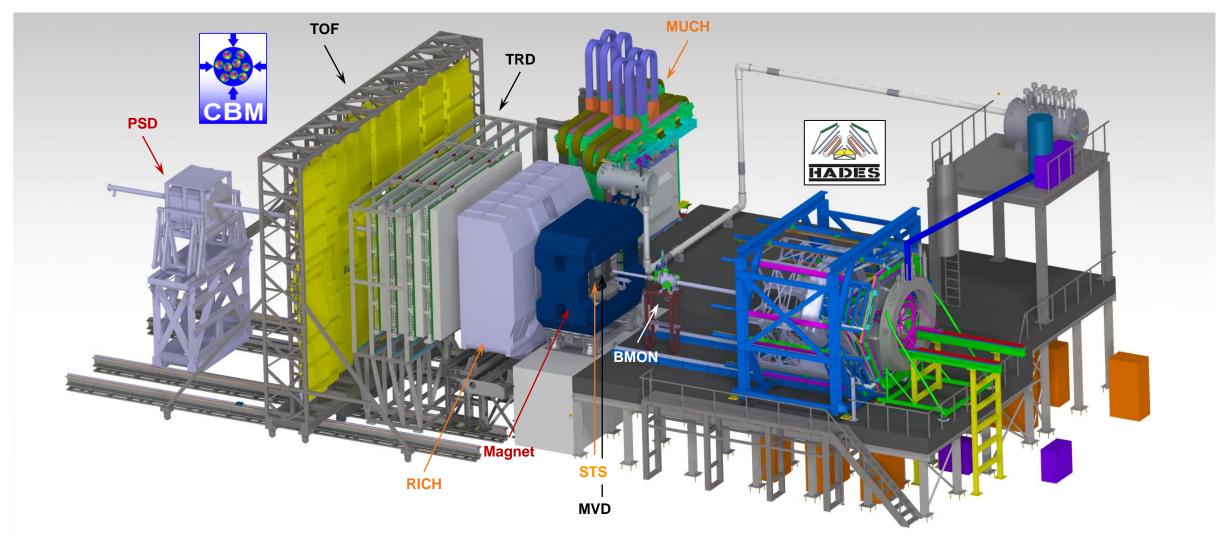


Recent developments of FAIR and CBM

Substantial cost increase surfaced in 2021,
Russian attack on Ukraine

Science evaluation in 2022 (chairs: R. Heuer, R. Tribble)

Recommendation: downscope FAIR project with cost cap

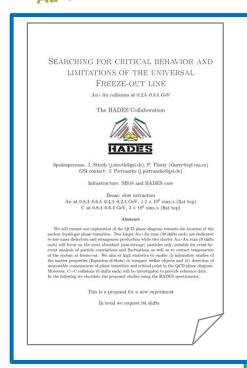

Suggested scenario: FS+: SIS100 & SFRS/R3B & CBM

Additional funds provided by BMBF Planned scenario: FS

Start of FS operation: 2028/29

C.B.M. experiments

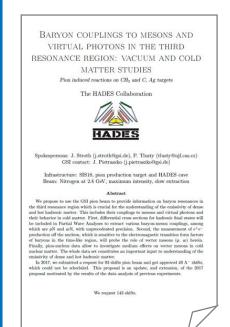
CBM Day-1 configuration (2028): rate capability 100 kHz Au+Au reactions with streaming (triggerless) readout of MVD, STS, RICH, MUCH, TRD, TOF and FSD


HADES

HADES: continue physics program at SIS18

Future measurements with SIS100 beams not part of FS+, will be done once SIS18 program is finished

Au+Au BES < 1 A GeV


EM transition form factors of hyperons

Cold matter effects including line shapes and SRC

Baryon resonances, meson baryon coupling in the 3rd resonance region

Iso-spin effects in dilepton production

SCRUTINIZING ISO-SPIN EFFECTS IN N+N BREMSSTRAHLUNG AND DIBARYON D*(2380) FORMATION IN N+P COLLISIONS

A Beam Energy Scan for proton and neutron induced reactions on protons

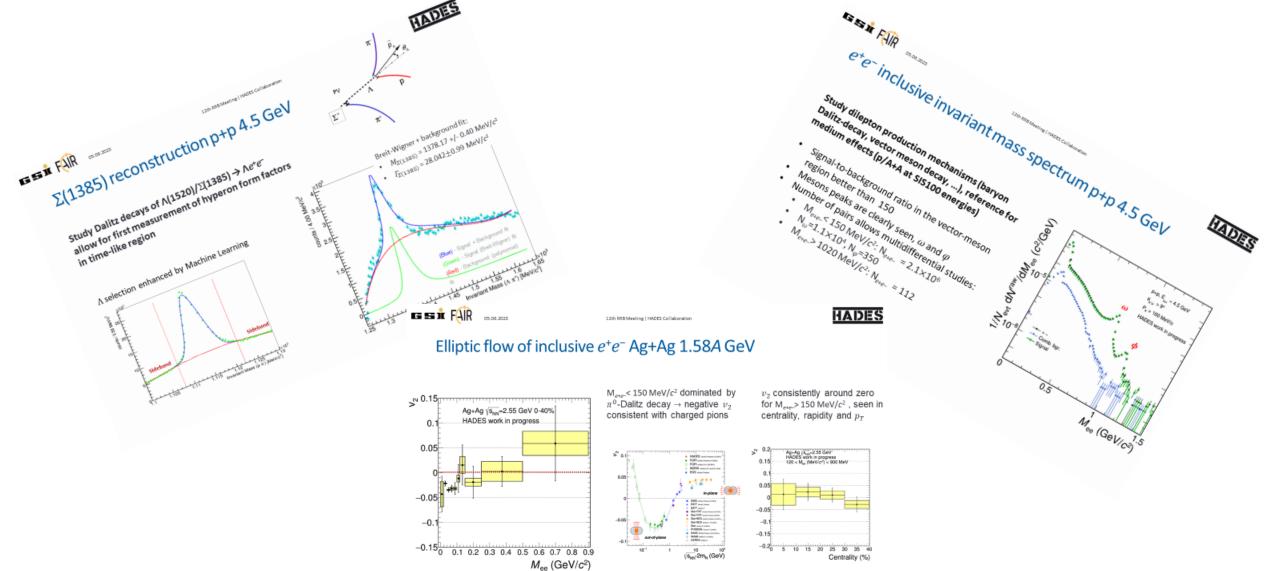
The HADES Collaboration

Spokespersons: J. Stroth (j.stroth@gsi.de), P. Tlusty (tlusty@ujf.cas.cz) GSI contact: J. Pietraszko (j.pietraszko@gsi.de)

Beam: d with kinetic energy of $T_{\rm d}=1.0,1.13,1,25,1.75~A$ GeV, beam intensity 2×10^7 deuterons/s, slow extraction

Abstract

We propose to investigate p-p and quasi-free a p- practions with descrimin beams on ILI traper with an improved experimental set-up which enables measurements of charged particles emitted into the very forward hemisphere. Quasi-free p-p and a p-p reaction with be discussingly by tagging the proton spectant from descrimin breaks up in the new emission. The main goals of proposal are: (1) measurement of NN reference spectra grade (and the proposal pr


Below is an executive summary of the proposed study with proton beam using the HADES spectrometer combined with the new forward detection system.

> This is a new experiment proposal. We request 106 shifts.

15 Billion events Ag+Ag taken already in 2019.

Recent HADES achievements

The upgraded HADES detector (five new detector systems)

• Improved physics performance through instrumentation of the very forward hemisphere using FAIR technology.

• In particular important for the Hyperon Program.

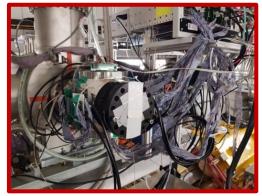
Forward RPC

LIP Coimbra

- Based on R&D for neuLAND
- TRB3 read-out

STS2

Jagiellonian Univ.


- PANDA straw technology
- PANDA PASTTREC FEE chip

iTOF

TransFAIR, Jülich

- APD read-out
- Enhances trigger purity

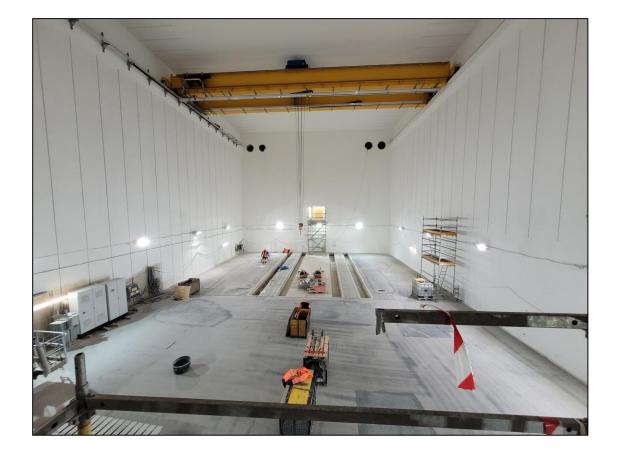
TO

GSI, TU Darmstadt

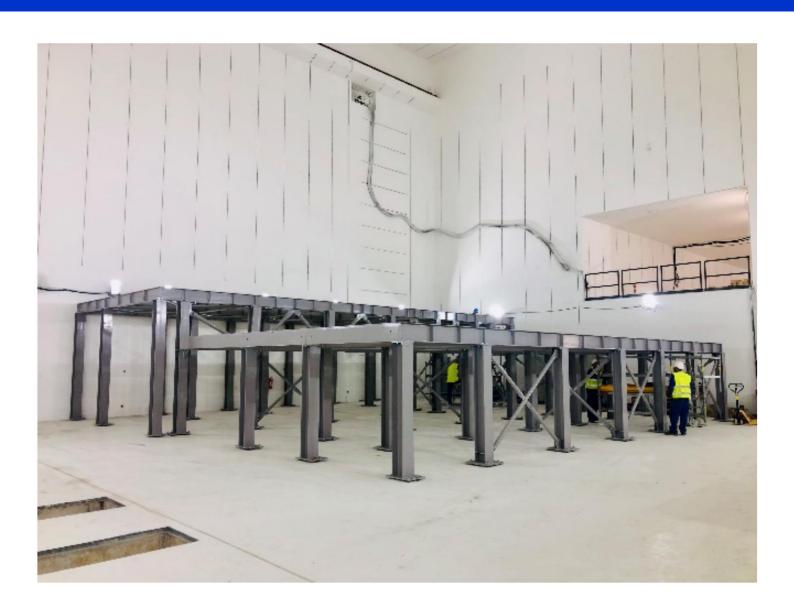
- LGAD technology
- In-beam detector

TransFAIR, Jülich

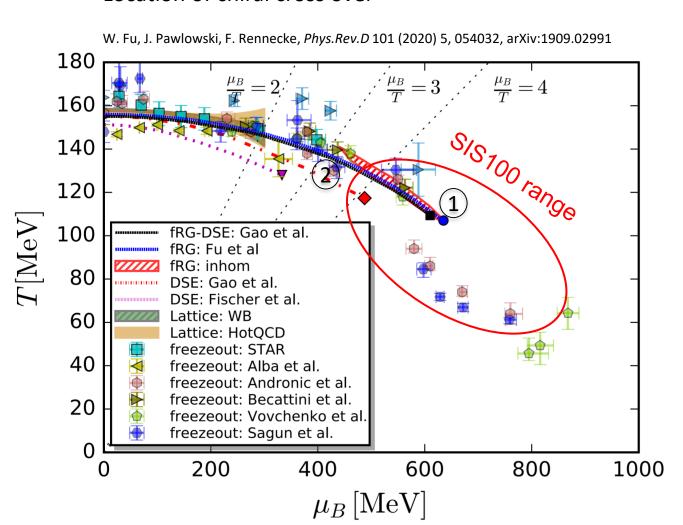
- PANDA straw technology
- PANDA PASTTREC FEE chip

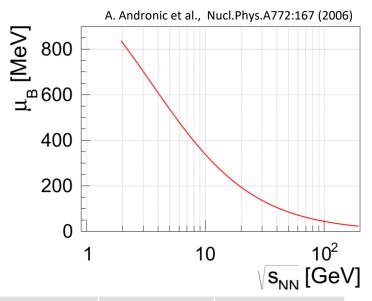

CBM collaboration

CBM experimental hall



CBM installation in experimental hall

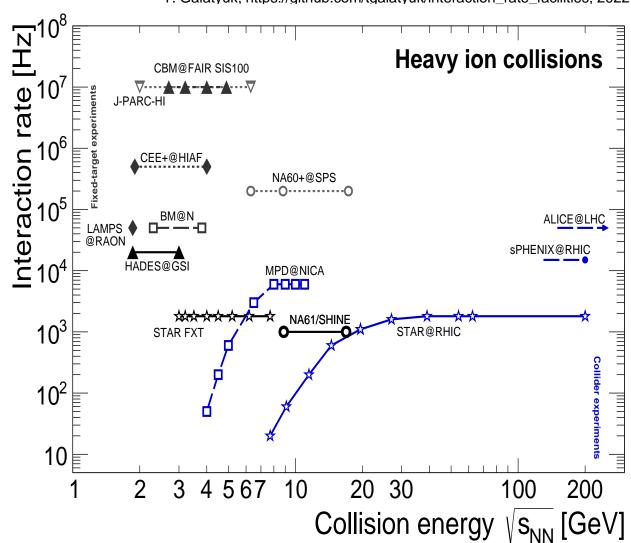

Upstream platform


Czech contribution to CBM

Phase structure of QCD

Location of chiral cross over

	μ_{B} (MeV)	√s _{NN} (GeV)	T _{lab} (A GeV)
1	622	3.8	6.0
	500	5.2	15.0
2	400	7.8	31.5


Challenges:

Phase transition not at freeze-out line, need probes with memory, reaction dynamics needs to be controlled.

CBM – Technological Goal

Mission:

Systematically explore QCD matter at large baryon densities with high accuracy and rare probes.

Disclaimer:

not all measurements benefit from the highest possible rates.

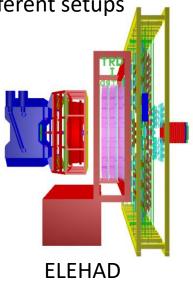
CBM observables

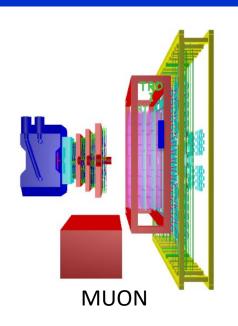
Criticality

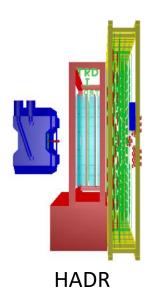
Vorticity

Emissivity

Hypernuclei


Charm in cold matter


Equation-of-State

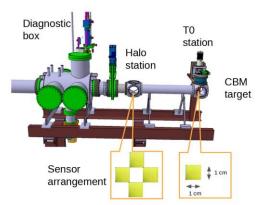

CBM setups

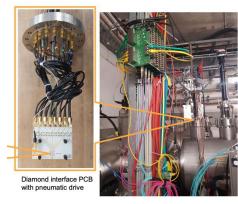
Sideview of different setups

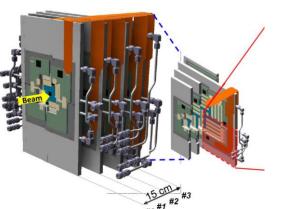
Setup	Included subsystems	Average day-1 interaction rate	Average MSV - interaction rate	Average event size in Au+Au collisions
ELEHAD	MVD,STS,RICH,TRD,TOF,FSD	0.1 MHz	0.1 MHz	75 kB
MUON	STS,MUCH,TRD,TOF,FSD	1 MHz	5 MHz	30 kB
HADR	STS,TRD,TOF,FSD	0.5 MHz	5 MHz	50 kB

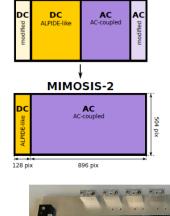
Status of CBM detector systems

Beam Monitor (BMON)

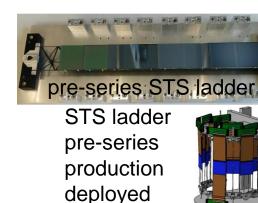

- T0 high purity pcCVD diamond demonstrator successfully tested in mCBM 2022 runs
- novel sensor technologies (LGAD, SiC) under investigation

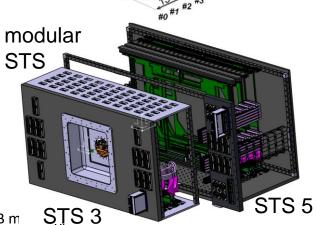

Micro Vertex Detector (MVD)


- Intensive test campaigns of full-size MAPS prototype MIMOSIS-1 → MIMOSIS-2 expected for mid of 2023
- Preproduction quadrant in preparation


Silicon Tracking System (STS)

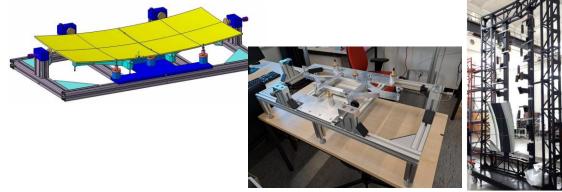
- Revised modular design with 3+5 stations
- Ladder preproduction will be deployed in J-PARC E16
- Re-design of FEB8-2 and FEB8-5





MIMOSIS-1

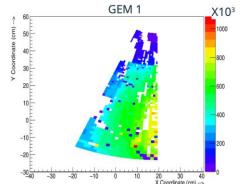
in J-PARC E16



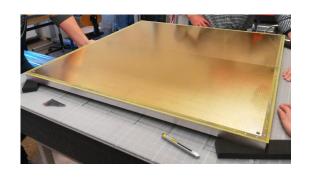
Status of CBM detector systems

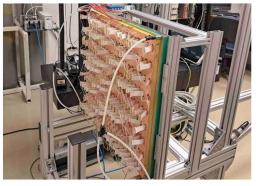
Ring Imaging CHerenkov detector (RICH)

- Towards mechanics engineering design and production readiness
- Photocamera series production of readout electronics
- Successful runs at HADES and mCBM



MUon CHamber system (MUCH)

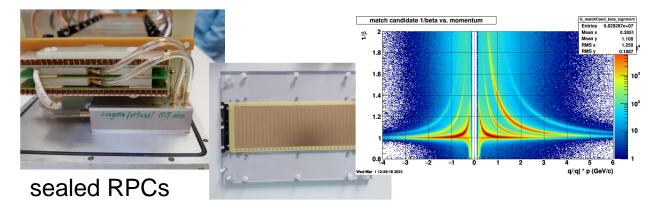

Intensive test campaigns of full-size GEM and RPC prototypes at GIF++ and mCBM, readout stability significantly improved, data analysis ongoing.

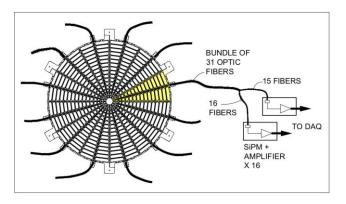


Transition Radiation Detector (TRD)

- Preproduction of 4 standard modules
- Construction of full-size TRD-2D prototype (inner part)
- New SPADIC 2.4 design, test submission planned for **April 2023**
- TRD as intermediate tracker, successful runs at mCBM

Status of CBM detector systems

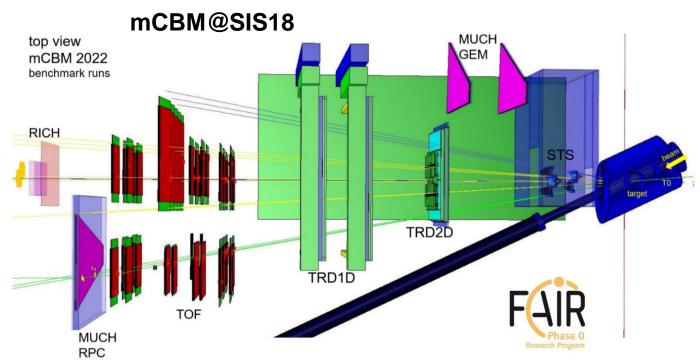


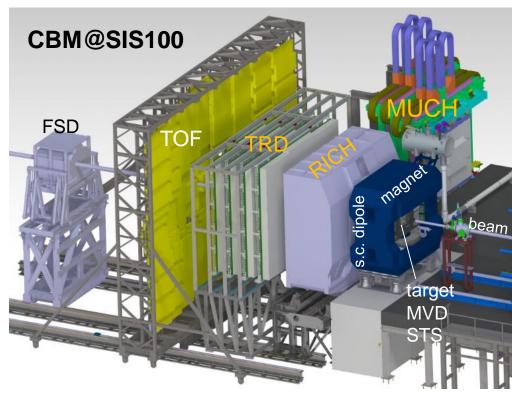

Time of Flight system (TOF)

- Successful data taking at STAR and mCBM, data analysis ongoing
- Sealed RPCs to enhance rate capability
- Engineering design of main frame
- RPC preproduction

Forward Spectator Detector (FSD)

- New design, likely based on ZnS scintillators and LYSO crystals for central part
- Read-out via SiPM
- Readout electronics based on existing solutions





110	109	31	38	1	107 106				51				52		13	54	55	
105	104	31	12	1	02	1	101		4	6			47	48		49	50	
100	99	90	95	94	93	92	91	1	16	3	7.	38	39	40	41	- 44	45	
100	99	90	89	88	87	86	85	-	10	31	ı	32	33	34	35	4	45	
96	97	84	83	82		76 75								28	29	42	43	
56	97	81	80	79		64 63 58 57		6	7	8	9	10 11	24	25	26	42	43	
	152	136 135		134		113 112 111 119 118 117 116		166 167 168 6 171 172 173 174				190	191					
153		139	138	137		125 124								193	194	207	208	
- 20		145	144	143	142	141	140	2	95	19	6	197	198	199	200	5007	1 260	
155	154	151	150	149 148		147	146	2	01	20	2	203	204	205	206	209	210	
160	159	11	58	1	57	1	56		21	11			12	2	13	214	215	
165	154	10	53	10	62	1	61		21	16		1	17	2	18	219	220	

With mCBM towards CBM

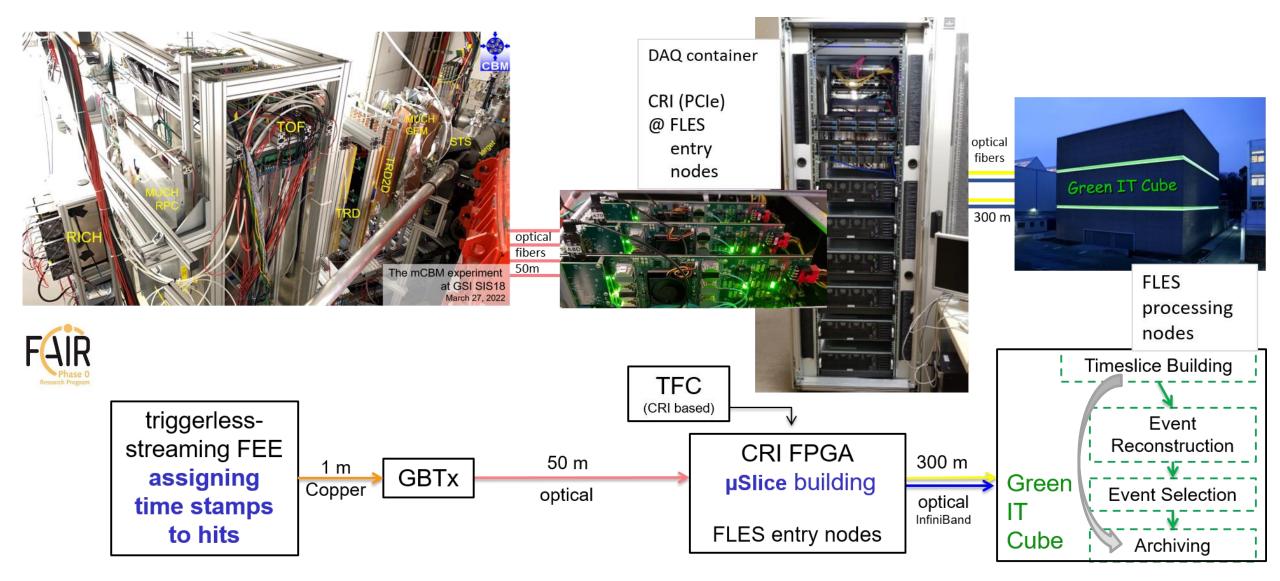
CBM full-system test setup at SIS18/GSI comprising pre-series productions of all CBM detector systems:

To 16+16ch pcCVD diamond, 1x1cm², 80 µm, part of BMON

STS 11 modules, 6x6cm² and 6x12cm² double-sided silicon-strip sensors, 5 ladders on 2 stations

MUCH 2 GEMs M2 modules (MUCH 1+2), 1 RPC (MUCH 3+4)

TRD 2 MWPCs with rect. pad (TRD1D, outer region), 1 MWPC with triang. pads (TRD2D, inner part)

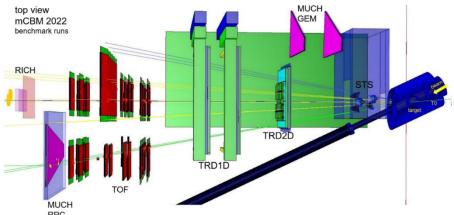

TOF 8 MRPCs modules in 2 stacks

RICH 2 aerogel radiators (2 20x20cm²), 36 MAPMTs

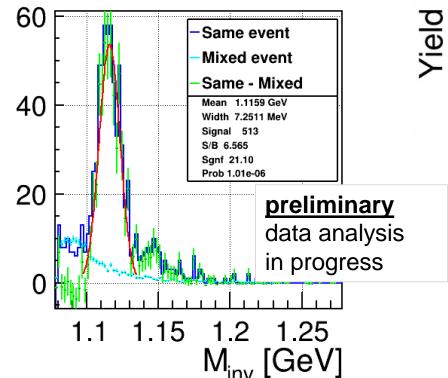
FSD and MVD test systems in preparation

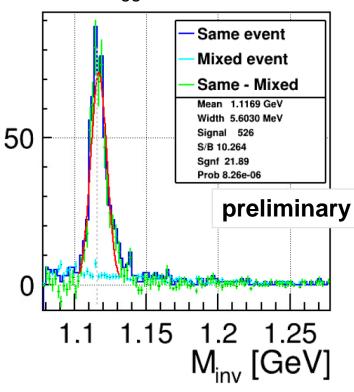
The free-streaming CBM DAQ and data processing

1st test version of an (FAIR MQ based) online selection



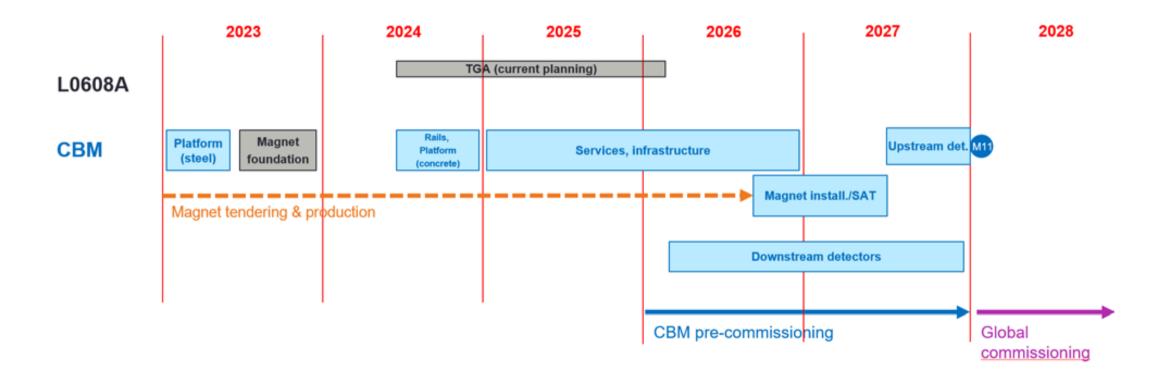
mCBM: A reconstruction in Ni+Ni collisions at 1.93 AGeV



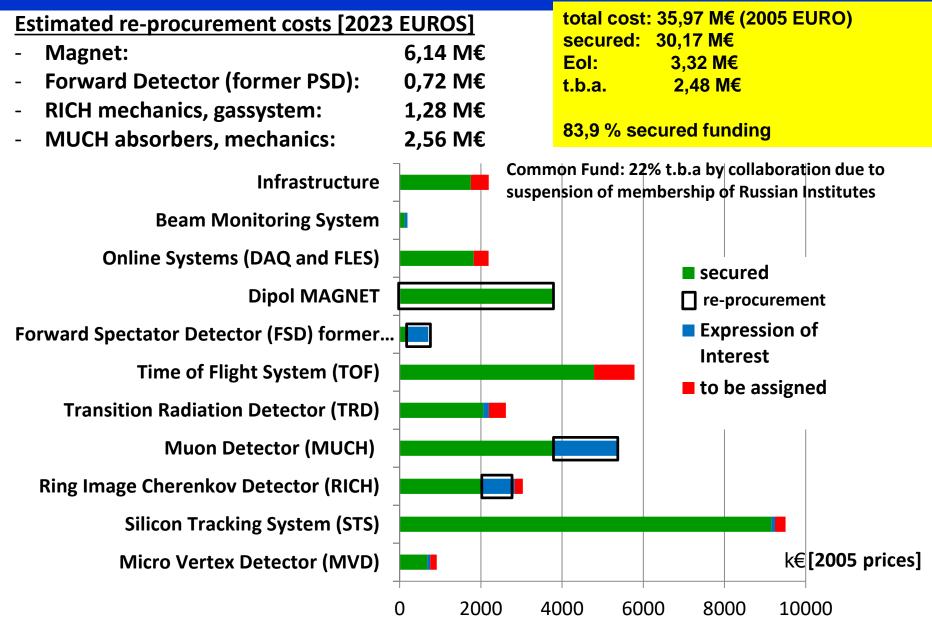


Data, run 2391, total run duration **1:57h** 4x to 5x10⁷ ions per spill, 10s spill 400 - 500 kHz average collision rate

Yield


MC , identical reconstruction chain
100 M generated events
10⁵ events / s
63.7 M triggered events

rare signal reconstructed, - milestone reached!


Timeline

Revised CBM day-1 funding (Jun. 2023)

Consequences of FS / FS+

Council decision:

(6) The additional non-German commitments will in principle be used to secure First Science. Exceptions from this principle with regard to a possibility to go beyond First Science require a Council decision, in particular the CBM magnets, expected for Summer 2023.

FAIR management plan:

Table 1: Components/services to be procured for the completion of the CBM science programme, their estimated costs (current price level) and their latest date for procurement/expense to keep the timeline.

1	EXP	CBM SC Dipole magnet	4-5 Mio. €	July 2023
2	EXP	CBM Silicon Tracker System	0,9 Mio. €	Q3 2024
500	31000000			
3	EXP	CBM PSD	0,5 Mio. €	Q4 2024
4	EXP	CBM RICH	1,0 Mio. €	Q2 2025
5	EXP	CBM MUCH	2,0 Mio. €	Q3 2025
6	ACC	CBM beamline magnets	4,2 Mio. €	Q4 2024
7	ACC	CBM beamline vacuum comp.	2,3 Mio. €	Q4 2024
8	S&B	TGA CBM cave	14,3 Mio. €	Q2 2024
9	S&B	TGA CBM cave risks	7 Mio. €	2024/2025
		Sum	ca. 37 Mio. €	

CBM is part of FAIR2028.
Thanks to all involved committees (ECE, JSC, AFC) and FAIR management!

The collaboration is actively seeking alternative funding sources for detector components (items 2-5), thus, possibly mitigating the financial needs. In case of several years of delay, a significant increase of costs of at least 20% would be expected.

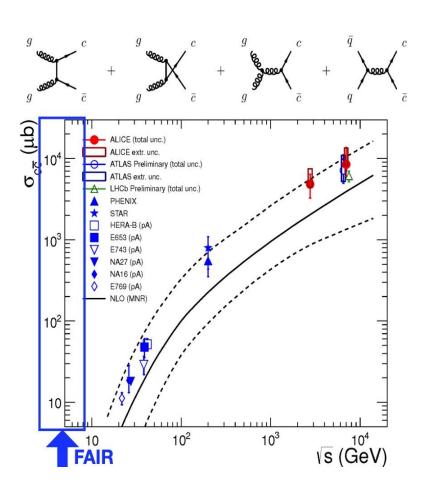
Note: Project core invest is necessary but not sufficient to keep the CBM collaboration active.
 BMBF – funds through German "Verbundforschung" are indispensable and needed for funding of personnel (PhD students and postdocs)

Residual needs beyond project Cl

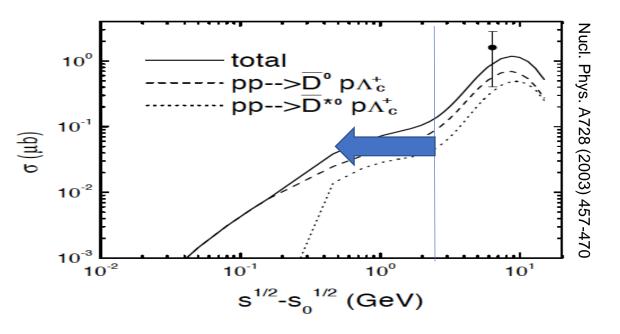
Lead institutions

Univ. Frankfurt
GSI, Univ. Tübingen
Univ. Münster, Frankfurt
Univ. Giessen, Wuppertal
Univ. Heidelberg
TU Darmstadt
Univ. Frankfurt, FIAS
GSI
VECC Kolkata
Rez, Prague -> FSD

GSI


			Gen	many	EA.	IR (ro-														
CBM day 1 setup detector / system	Costs	Common fund	GSI and FAIR project funds	University funding (VF)	proc *IKC for	urm STS v	nent) with JINR ninated)	India	Poland	Romania	China	Czech	Rep	ublic	Hui	nga	iry	France	Korea	Ukraine	to be assigned
MVD	1,49			0,60														0,51	0,12		0,27
STS	15,54		7,57	0,99		*	3,46		2,94											0,15	0,42
TRD	4,28			1,28						2,02					0,23	+	0,06				0,68
RICH	4,96		2,03	1,32	1,28	+															0,33
TOF	9,46		1,21	0,72			0,00			1,22	4,67										1,63
Beam Monitoring System	0,39			0,12								0,08									0,20
Online Systems (DAQ+FLES) day-1 setup	2,98		1,44	1,22					0,33												
Magnet	6,14					+	6,14														
MuCh	8,82				2,57	+		6,26													
Forward Detector (former PSD)	1,15				0,72	+						0,27	+	0,16							
Infrastructure	3,58	2,87																			0,72
ECAL (not part of day 1 setup)																					·
Sum in 2023 M€	58,81	2,87	12,25	6,25	4,57	+	9,60	6,26	3,27	3,24	4,67	0,35	+	0,16	0,23	+	0,06	0,51	0,12	0,15	4,25
Sum in 2005 M€	35,97	1,75	7,49	3,82	2,79	+	5,87	3,83	2,00	1,98	2,86	0,21	+	0,10	0,14	+	0,04	0,31	0,07	0,09	2,60
escalation factor (1./1.635)																					
This calculation uses an escalation factor	of 1.635 between 20	05 prices and 202	3 prices				amounts	s in gree	n are co	nsidered a	ıs secur	ed /			83,9	%	secure	ed			
This calculation uses an escalation factor		05 prices and 202	3 prices				amounts	in blue -		on of Intere					83,9	%	secure	ed			
		05 prices and 202	3 prices				amounts	in blue -	Expressi	on of Intere					83,9	%	secure	ed			
1,635		05 prices and 202	3 prices	6,25	4,57		amounts	in blue -	Expressi	on of Intere			+	0,16	0,23		secure 0,06	e d 0,51	0,12	0,15	4,25
1,635 CBM phase 1 setup				6,25	4,57		amounts amounts	in blue - in red -	Expression to be ass	on of Intere	est (EoI)		+	0,16					0,12	0,15	4,25 0,59
CBM phase 1 setup CBM day 1 setup full bandwidth	58,81			6,25	4,57		amounts amounts	in blue - in red -	Expression to be ass	on of Intere	est (EoI)		+	0,16					0,12	0,15	,
CBM phase 1 setup CBM day 1 setup full bandwidth (DAQ/FLES)	58,81 0,59			6,25 6,25	,		amounts amounts	in blue - in red -	Expression to be ass	on of Intere	est (EoI)			0,16			0,06		0,12	0,15	,
CBM phase 1 setup CBM day 1 setup full bandwidth (DAQ/FLES) plus ECAL	58,81 0,59 4,59	2,87	12,25		4,59		amounts amounts 9,60	in blue - in red -	Expression to be ass	on of Interesigned	4,67	0,35	+	,	0,23	+	0,06	0,51	,	,	0,59

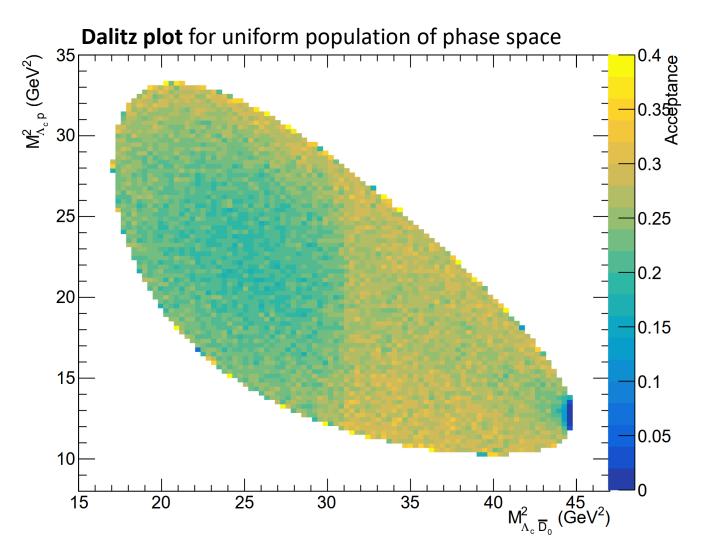
Extension of the CBM Physics Program



Physics potential of 29 GeV proton beams is being explored together with PANDA groups (J. Messchendorp, J. Ritman, P. Salabura)

Example for Day-1 CBM hadron setup: charm production, charm-N interaction

- Validity of pQCD at SIS100 energies?
- SU(4) estimates for (exclusive) charm hyperon production: 100 nb@SIS100
- Perspectives to study for the first time near-threshold charm production



Can intrinsic charm of nucleon enhance production cross section? (Analogy of ss bar content in nucleon and ϕ production)

CBM projection for studying exclusive reactions

$$pp \rightarrow p\Lambda_c(\rightarrow pK^-\pi^+) \bar{D}_0(\rightarrow K^+\pi^-)$$

Rate estimate:

Cross section: 100 nb

Beam intensity: 10¹² 1/s

Target: LH2

Target thickness: 5 cm

Duty cycle: 50%

⇒ Detected reaction rate (including BRs): $1 \text{ Hz} = 8.6 \cdot 10^4 \text{ / d}$

Detailed studies of pD and $p\Lambda_c$ interactions become possible (femtoscopy).

Conclusion

- Hades will continue successful program with SIS18 beams (HI, p, π)
- CBM pushes to be part of the official FAIR2028 program by FAIR Council decision
 - uniqueness of physics program is confirmed by Heuer/Tribble, ECE and JSC
 - CBM planning is assuming a positive decision of FAIR council and goes for first SIS100 beams in 2028
 - missing the `urgency requirement' will be hindering the application for necessary funds for completion
 - personnel funding (PhD students, postdocs) is essential for the university groups to continue
 - CBM groups should be funded to secure alternatives in SIS100 usage in 2027/2028
- CBM is working on the possibility of including the beam line to CBM-Cave into FAIR 2018
 - CBM is in contact with PANDA groups to define a competitive hadron physics program with proton beams.
 - APPA (ESA) measurement options are being investigated.