Spectroscopy of light nuclei through χ EFT-based PGCM calculations

Benjamin Bally

DREB2024 - Wiesbaden - 24/06/2024

Motivations

cea

- Progress in ab initio description of atomic nuclei
 - Development of new methods but also revisiting old ones
 - \diamond Example: phenomenological shell model \longrightarrow *ab initio* VS-IMSRG

Motivations

- Progress in ab initio description of atomic nuclei
 - Development of new methods but also revisiting old ones
 - \diamond Example: phenomenological shell model \longrightarrow *ab initio* VS-IMSRG
- Projected Generator Coordinate Method (PGCM)
- Used with success in the context of Energy Density Functional (EDF) Egido, Physica Scripta 91, 073003 (2016)
 - \rightarrow technical know-how

- Progress in ab initio description of atomic nuclei
 - Development of new methods but also revisiting old ones
 - \diamond Example: phenomenological shell model \longrightarrow *ab initio* VS-IMSRG
- Projected Generator Coordinate Method (PGCM)
- Used with success in the context of Energy Density Functional (EDF) Egido, Physica Scripta 91, 073003 (2016)
 - \rightarrow technical know-how
- Many advantages
 - Efficient at capturing static correlations (e.g. deformation)
 - \diamond Respects the symmetries of H
 - Access to excited states and various observables
 - $\diamond~$ Gentle scaling: mean field \times large prefactor

• Approximate wave function

$$|\Psi_{\epsilon}^{\sigma}\rangle = \sum_{i} f_{\epsilon,i}^{\sigma} P^{\sigma} |\Phi_{i}\rangle \quad \text{ where } \sigma \equiv Z, N, J, M, K, \pi$$

• Reference states $\{|\Phi_i\rangle\} \rightarrow$ capture collective correlations

• Approximate wave function

$$|\Psi_{\epsilon}^{\sigma}\rangle = \sum_{i} f_{\epsilon,i}^{\sigma} P^{\sigma} |\Phi_{i}\rangle \quad \text{ where } \sigma \equiv Z, N, J, M, K, \pi$$

- Reference states $\{|\Phi_i\rangle\} \rightarrow$ capture collective correlations
- Variational principle

$$\delta\left(\frac{\langle \Psi_{\epsilon}^{\sigma}|H|\Psi_{\epsilon}^{\sigma}\rangle}{\langle \Psi_{\epsilon}^{\sigma}|\Psi_{\epsilon}^{\sigma}\rangle}\right) = 0 \quad \Rightarrow \quad f_{\epsilon,i}^{\sigma}$$

• Approximate wave function

$$|\Psi_{\epsilon}^{\sigma}\rangle = \sum_{i} f_{\epsilon,i}^{\sigma} P^{\sigma} |\Phi_{i}\rangle \quad \text{ where } \sigma \equiv Z, N, J, M, K, \pi$$

- Reference states $\{|\Phi_i\rangle\} \rightarrow$ capture collective correlations
- Variational principle

$$\delta\left(\frac{\langle \Psi_{\epsilon}^{\sigma}|H|\Psi_{\epsilon}^{\sigma}\rangle}{\langle \Psi_{\epsilon}^{\sigma}|\Psi_{\epsilon}^{\sigma}\rangle}\right) = 0 \quad \Rightarrow \quad f_{\epsilon,i}^{\sigma}$$

cea

• Approximate wave function

$$|\Psi_{\epsilon}^{\sigma}\rangle = \sum_{i} f_{\epsilon,i}^{\sigma} P^{\sigma} |\Phi_{i}\rangle \quad \text{ where } \sigma \equiv Z, N, J, M, K, \pi$$

- Reference states $\{|\Phi_i\rangle\} \rightarrow$ capture collective correlations
- Variational principle

$$\delta\left(\frac{\langle \Psi_{\epsilon}^{\sigma}|H|\Psi_{\epsilon}^{\sigma}\rangle}{\langle \Psi_{\epsilon}^{\sigma}|\Psi_{\epsilon}^{\sigma}\rangle}\right) = 0 \quad \Rightarrow \quad f_{\epsilon,i}^{\sigma}$$

- New formalism: PGCM Perturbation Theory (PGCM-PT) Frosini, EPJA 58, 62 (2022); Frosini, EPJA 58, 63 (2022); Frosini, EPJA 58, 64 (2022)
 - ◊ Multi-reference perturbation theory on top of a PGCM reference state
 - Includes missing dynamical correlations

PGCM-PT: example of ²⁰Ne

cea

- ²⁰O: Recent experimental results compared with *ab initio* calculations Zanon, PRL 131, 262501 (2023)
- ¹⁶C: Recent experiment at Argonne National Laboratory

<u>cea</u>

- ²⁰O: Recent experimental results compared with *ab initio* calculations Zanon, PRL 131, 262501 (2023)
- ¹⁶C: Recent experiment at Argonne National Laboratory
- Details of the calculation
 - Hamiltonians: EM1.8/2.0, Hüther N3LO
 Hebeler, PRC 83, 031301 (2011); Hüther, PLB 808, 135651 (2020)
 - Rank-reduction of 3N to an effective 2N Frosini, EPJA 57, 151 (2021)
 - $\diamond~e_{\max}$ = 6 (7 HO shells), $e_{3\max}$ = 18, $\hbar\omega$ = 12
 - ♦ Collective coordinates: triaxial deformations (β , γ), cranking (ω)

Spectroscopy of ²⁰O (preliminary)

• Minimum only slightly triaxial: $\beta \approx 0.31$, $\gamma \approx 6^{\circ}$

[Data partly taken from Zanon, PRL 131, 262501 (2023)]

• $\mathsf{PGCM}(\beta,\gamma,\omega)$ consistent with VS-IMSRG calculations

DREB2024 - 24/06/2024

B(E2)	Experiment	Shell model	VS-IMSRG	$PGCM(\beta,\gamma)$	$PGCM(eta,\gamma,\omega)$
$(e^2 \text{fm}^4)$		USDB	EM1.8/2.0	EM1.8/2.0	EM1.8/2.0
$2^+_1 ightarrow 0^+_1$	5.9(2)	3.25	0.89	1.59	1.33
$2^+_2 \rightarrow 0^+_1$	1.3(2)	0.77	0.20	0.45	0.45
$2^+_2 \rightarrow 2^+_1$	4(2)	0.0005	0.07	0.01	0.006
$3_1^+ \rightarrow 2_1^+$	0.32(7)	0.57	0.17	1.13	0.34

- Theory does not reproduce experimental data (not shown here but works slightly better for B(M1))
- Cranking does not change much the transition probabilities \rightarrow but better for 3^+_1

- Similar energy surfaces but EM1.8/2.0 more rigid
- Triaxial minima: 0.55, 22° (EM1.8/2.0) and 0.63, 18° (Hüther N3LO)

Spectroscopy of ¹⁶C (preliminary)

· Preliminary predictions, e.g. need to add cranking

Spectroscopy of ¹⁶C (preliminary)

• Preliminary predictions, e.g. need to add cranking

- Developments of PGCM in the *ab initio* context
 - $\diamond~$ Use of $\chi {\rm EFT}{\rm -based}$ Hamiltonians
 - ◊ Formulation of PGCM-PT
 - ♦ Work remains to make the whole scheme more systematic/controllable

- Developments of PGCM in the *ab initio* context
 - $\diamond~$ Use of $\chi {\rm EFT}{\rm -based}$ Hamiltonians
 - ◊ Formulation of PGCM-PT
 - Work remains to make the whole scheme more systematic/controllable
- Useful tool to describe low-energy spectroscopy
 - Captures important collective correlations
 - Conserves symmetries and associated selection rules for transitions
 - \diamond Access to various observables of interest (J^{π} , E_{exc} , Q_s , μ , $B(T\lambda)$, ...)
- Good descripton of $^{\rm 20}{\rm O}$ and $^{\rm 16}{\rm C}$ spectra

T. R. Rodríguez

