Peripherality of Nuclear-Dominated Breakup Reactions

Pierre Capel & Chloë Hebborn

24 June 2024

Halo nuclei

- Light, neutron-rich nuclei
- small S_{1n} or S_{2n}
- Iow-ℓ orbital


```
Two-neutron halo

{}^{6}\text{He} \equiv {}^{4}\text{He} + n + n

{}^{11}\text{Li} \equiv {}^{9}\text{Li} + n + n
```


However difficult to study experimentally $[\tau_{1/2}(^{11}Be)= 13 \text{ s}]$ \Rightarrow require indirect techniques, like reactions : breakup, knockout... Need accurate theoretical description of reaction Need to know to what the reaction is sensitive i.e. which structure information can be inferred from experiments

Model of Breakup Reactions

Projectile (P) modelled as a two-body system : core (c)+loosely bound fragment (f) described by

- $H_0 = T_r + V_{cf}(\mathbf{r})$
- *V_{cf}* adjusted to reproduce *P* spectrum

Target T seen as structureless particle

P-T interaction simulated by optical potentials

 \Rightarrow breakup reduces to three-body scattering problem :

$$\left[T_R + H_0 + V_{cT} + V_{fT}\right]\Psi(\boldsymbol{r},\boldsymbol{R}) = E_T\Psi(\boldsymbol{r},\boldsymbol{R})$$

with initial condition $\Psi(\mathbf{r}, \mathbf{R}) \xrightarrow[Z \to -\infty]{} e^{iKZ + \cdots} \phi_0(\mathbf{r})$

Study of nuclear spectroscopy?

Reaction models rely on single-particle model :

 $[T_r + V_{cf}(r)] \phi_{nlm}(\mathbf{r}) = E_{nl} \phi_{nlm}(\mathbf{r}) \text{ with } ||\phi_{nlm}|| = 1$

In reality, there is admixture of configurations :

 ${}^{A}Y(J^{\pi}) = {}^{A-1}X(J_{c}^{\pi}) \otimes \psi_{lm} + \dots$

where ψ_{lm} is the overlap wave function Spectroscopic Factor : $S_l = ||\psi_{lm}||^2$ Single-particle approximation $\equiv \psi_{lm} = \sqrt{S_l} \phi_{nlm}$ \Rightarrow usual idea : $S_l = \sigma_{bu}^{exp} / \sigma_{bu}^{th}$

But is it correct?

Aren't breakup reaction peripheral?

 \Leftrightarrow probe tail of wave function : $u_l(r) \xrightarrow[r \to \infty]{} C_l e^{-\kappa r}$

 \Leftrightarrow Asymptotic Normalisation Constant C_l

Analysis of Coulomb breakup ${}^{19}C+Pb \rightarrow {}^{18}C+n+Pb$ Once S_n and $C_{s1/2}$ fitted, the agreement with data is excellent

Exp : [Nakamura et al. PRL 83, 1112 (1999)] Th : [P.C., Phillips et al. EPJA 53, 273 (2023)]

No sensitivity to $\sigma \Rightarrow$ peripheral \Rightarrow probe ANC $C_{s1/2}$ not SF $S_{s1/2}$

But Coulomb dominated... What about nuclear-dominated reactions?

Peripherality of nuclear breakup

Use different V_{cf} to produce wave functions with same ANC obtained by Halo-EFT @ N²LO to include *d* resonances

[Kubushishi, P.C., arXiv: 2406.10168 (2024)]

• Different cutoffs σ lead to different interiors of wave function

- NO difference in $\sigma_{bu} \Rightarrow$ insensitive to short range ($r \leq 4$ fm) but at the resonances
- But all wave functions have same shape...

Peripherality of breakup reactions

Use 2 V_{cf} with different interior but same asymptotics obtained by SuSy transformations [D. Baye PRL **58**, 2738 (1987)]

[P.C., Nunes, PRC 75, 054609 (2007)]

- Deep potential \Rightarrow deep $0s_{1/2}$ bound state \Rightarrow node in physical bound state
- Remove deep state by SuSy ⇒ remove node but keep same asymptotics (ANC and phase shift)
- NO difference in $\sigma_{bu} \Rightarrow$ insensitive to short range ($r \leq 3$ fm)
- But both have $S_{s1/2} = 1...$

but at the resonances

SF vs ANC in Nuclear Breakup

- Use 2 V_{cf} fitted to reproduce
 - S_{1n} ⁽¹¹Be) & ab initio ANC $C_{s1/2}$

• SF :
$$S_{s1/2} = 1$$
 or $S_{s1/2} = 0.9$

[Calci et al. PRL 117, 242501 (2016)]

[P.C., Phillips, Hammer, PRC 98, 034610 (2018)]

- NO noticeable difference \Rightarrow confirms breakup is peripheral
- Only ANC is probed
- But what about knockout?

but at resonances

SF vs ANC in Knockout

- Use 2 V_{cf} fitted to reproduce
 - $S_{1n}(^{11}\text{Be})$ & *ab initio* ANC $C_{1/2^+}$

• SF : $S_{s1/2} = 1$ or $S_{s1/2} = 0.9$

[Calci et al. PRL 117, 242501 (2016)]

- Same results for $S_{s1/2} = 1$ and $0.9 \Rightarrow NO$ sensitivity to SF
- But excellent probe of the ANC
- But... what about more deeply bound nuclei?

Sensitivity of KO

Assume $u_{1s1/2}(r) = 0 \ \forall r < r_{\min}$ and compute σ_{bu} (diffractive breakup), σ_{str} (stripping), SF, $\langle r^2 \rangle$ for (a) halo ($S_n = 0.5 \text{ MeV}$) and (b) deeply bound ($S_n = 10 \text{ MeV}$)

- $\sigma_{
 m bu}$ and $\sigma_{
 m str}$ insensitive to cutoff at small $r_{
 m min}$
- SF affected already at $r_{\rm min} = 0.5$ fm
- $\sigma_{
 m bu}$ and $\sigma_{
 m str}$ do not scale with SF
- but $\sigma_{\rm bu}$ and $\sigma_{\rm str} \propto \langle r^2 \rangle$

 $\sigma_{\rm KO} \propto \langle r^2 \rangle$

Using different geometries of V_{cf} , different $\langle r^2 \rangle$ can be obtained

[Hebborn, PC PLB848, 138413 (2024)]

• $\sigma_{\rm KO} \propto \langle r^2 \rangle$

- True for both components $\sigma_{
 m bu}$ and $\sigma_{
 m str}$
- Explained by a perturbative expansion of eikonal cross section

Summary and take-home message

- Halo nuclei studied mostly through reactions
- Breakup is purely peripheral, so we probe :
 - ANC of the ground state C_l
 - (phase shift in the continuum)
 - Not the SF S_l
- This is true for
 - Coulomb breakup
 - Nuclear breakup
 - Knockout

Be sure to know to what the reaction is sensitive...

Thanks to my collaborators

Chloë Hebborn Filomena Nunes

Daniel Phillips

Hans-Werner Hammer

Live-Palm Kubushishi

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

