

Proton-neutron pairing in the fp-shell via ⁴⁸Cr(p,³He)⁴⁶V transfer reaction

Hugo Jacob, hjacob@ijclab.in2p3.fr DREB conference, 28/06/2024

Scientific context : proton-neutron pairing

Isovector (J=0, T=1)

proton-proton neutron-neutron proton-neutron

Isoscalar (J=1, T=0)

proton-neutron

- Observable mostly, if not only, in N=Z nuclei
- 2 different channels available, with different strengths
- Deuteron only bound in isoscalar channel (J=1, T=0)
- Pairing effects depend on the collectivity of the shell

Scientific context : proton-neutron pairing

Binding energy anomaly in N=Z nuclei

Double binding energy formula: $\Delta V_{np} = 1/4(B(N,Z) - B(N,Z-2) - B(N-2,Z) + B(N-2,Z-2))$

Data from ENSDF using TkN software

proton-proton neutron-neutron proton-neutron

Isoscalar (J=1, T=0)

proton-neutron

- Observable mostly, if not only, in N=Z nuclei
- 2 different channels available, with different strengths
- Deuteron only bound in isoscalar channel (J=1, T=0)
- Pairing effects depend on the collectivity of the shell

3

Smoking gun: two-nucleon transfer

Pairing effects on two-nucleon transfer cross-sections

Macchiavelli, Progress in Particle and Nuclear Physics, 24-90 **78**, 2014

- Near closed shell, cross-section increasing proportionally to the number of pairs (vibrational)
- In the middle of the shell, cross-section depends on the gap and pairing strength (rotational)

Historical example: neutron-neutron pairing

closed

shell

Superfluids $\sim (\Delta/G)^2$ $\rightarrow ((\Delta/G)^2$ $\rightarrow ((\Delta/G)^2$ $\rightarrow ((\Delta/G)^2$

10

204

S. Frauendorf and A.O. Macchiavelli, Progress in Particle and Nuclear Physics, 24-90 **78**, 2014

Cross-section

enhancement

 σ (A_{gs} \rightarrow A+2_{gs})

- Laboratoire de Physique des 2 lifnis
- Near closed shell, cross-section increasing proportionally to the number of pairs (vibrational) In the middle of the shell, cross-section depends on

~ (n +1)

closed

shell

the gap and pairing strength (rotational)

Adapted from D. M. Brink, R. A. Broglia, Nuclear Superfluidity Data from W. A. Lanford, Phys. Rev. C **16**, 988

205

²⁰⁸Pb is a double shell closure, vibrational behavior for

206

207

Mass of the father Pb isotope

208

Historical example: neutron-neutron pairing

Sn isotopes (p,t) reaction cross section to the first and second 0^+ ratio

S. Frauendorf and A.O. Macchiavelli, Progress in Particle and Nuclear Physics, 24-90 **78**, 2014

Near closed shell, cross-section increasing proportionally to the number of pairs (vibrational) In the middle of the shell, cross-section depends on the gap and pairing strength (rotational) Adapted from D. M. Brink, R. A. Broglia, Nuclear Superfluidity Data from D. G. Fleming *et al.*, Nuclear Physics A **157**, 1-31, 1970

Experimental method: two-nucleon transfer

(p,³He) selection rules allow to populate both low-lying states

- Transfer to (T=0, J=1) state gives information on isoscalar pairing strength, and similarly for (T=1, J=0) and isovector pairing strength.
- Same reaction mechanism: L=0 transfer (DWBA) necessary to discriminate L=2

- Cross section ratio: useful to get rid of experimental biases
- Proton-neutron pairs: cross-section ratio shows the competition between isoscalar and isovector pairing channels

Pairing in f_{7/2} shell

Pairing states energy difference in N=Z nuclei

- Pairing lowers related states energy
- 0^+ g.s. in f_{7/2} could indicate stronger isovector strength in this shell

Deformation in N=Z nuclei (f_{7/2} shell)

 ⁴⁸Cr: good candidate to study interplay between pairing and deformation

Courtesy of V. Alcindor

- 2 CATS trackers before the target
- Position resolution on target: 1 mm
- Necessary to improve angular resolution, and thus excitation energy reconstruction

MUST2

- MUST2 array: DSSD delta E and position, CsI Total Energy
- 4 MUST2 telescopes, angles lab between 5 and 28 degrees
- Integrated electronics

Courtesy of V. Alcindor

E CsI (MeV)

- 12 EXOGAM clovers around the target (~5% efficiency at 1 MeV)
- Each crystal is segmented in 4 for better Doppler correction

Zero Degree Detection (ZDD)

5 Ionisation chambers (Isobutane 200 mbar)

Courtesy of V. Alcindor

5 Plastic scintillators

ZDD heavy recoil detection:

- ΔE in ionisation chambers
- Total Energy in plastics
- Time of Flight between CATS trackers and plastics

(p,³He) first results

(p,³He) first results

(p,³He) first results

Excited states and gamma rays correlations

Excited states and gamma rays correlations

Excited states and gamma rays correlations

- Energy gating without ZDD coincidence

Outlook

-

B. Le Crom, M. Assié, *et al.*, Physics Letters B **829** (2022) 137057

- DWBA analysis of ⁴⁶V g.s.
- Analysis of gamma rays to determine 1⁺ population
 - Extraction of absolute cross sections for 0⁺ and 1⁺

Collaboration:

IJCLAB: H. Jacob, M. Assié, V. Alcindor, Y. Blumenfeld, D. Beaumel, J. Béquet, N. De Séréville, S. Franchoo, M. Kaci, F. Hammache, I. Matea, O. Nasr, I. Stephan
GANIL: Ö. Aktas, E. Clément, G. De France, F. De Oliveira, L. Dienis, A. Lemasson, O. Sorlin, J.C. Thomas, T. Roger, S. Koyama
INFN: S. Bottoni, F. Galtarossa, A. Gottardo, S. Pigliapoco, L. Zago
IFIN: F. Rotaru, M. Stanoiu
CENBG: Q. Delignac
University of Surrey: C. Paxman
IGFAE: M. Lozano González

