

DREB24

Ab initio effective potentials for proton elastic scattering based on NCSM nonlocal densities

Charlotte Elster

Thanks to collaborators:

+ astronomy

R.B. Baker, M. Burrows S.P. Weppner, K. Launey, P. Maris, G. Popa

Supported by

Office of Science

National Energy Research Scientific Computing Center

How do we learn about nuclei: Reactions

Exotic Nuclei are usually short lived:

Have to be studied with reactions in inverse kinematics

Physics extracted from direct reactions -- Elastic Scattering:

Traditionally used to extract optical potentials, rms radii, density distributions

Eur. Phys. J. A **15**, 27–33 (2002) DOI 10.1140/epja/i2001-10219-7

Nuclear-matter distributions of halo nuclei from elastic proton scattering in inverse kinematics

P. Egelhof^{1,a}, G.D. Alkhazov², M.N. Andronenko², A. Bauchet¹, A.V. Dobrovolsky^{1,2}, S. Fritz¹, G.E. Gavrilov²,
H. Geissel¹, C. Gross¹, A.V. Khanzadeev², G.A. Korolev², G. Kraus¹, A.A. Lobodenko², G. Münzenberg¹,
M. Mutterer³, S.R. Neumaier¹, T. Schäfer¹, C. Scheidenberger¹, D.M. Seliverstov², N.A. Timofeev², A.A. Vorobyov²,
and V.I. Yatsoura²

¹ Gesellschaft für Schwerionenforschung (GSI), D-64291 Darmstadt, Germany

² Petersburg Nuclear Physics Institute (PNPI), RU-188300 Gatchina, Russia

³ Institut für Kernphysik (IKP), Technische Universität, D-64289 Darmstadt, Germany

Matter distributions for ^{6,8}He and ^{6,8,9,11}Li measured

Reactions with exotic nuclei

Exotic Nuclei are usually short lived:

Have to be studied with reactions in inverse kinematics

e.g. direct reaction:

Many-body problem

Quantum mechanical scattering problem

In the continuum, theory can solve the few-body problem exactly.

few-body problem with effective interactions

Effective interactions from *ab initio* methods

Start from many-body Hamiltonian with 2 (and 3) body forces

Theoretical foundations laid by Feshbach and Watson in the 1950s

Feshbach:

effective nA interaction via Green's function from solution of many body problem using basis function expansion, e.g. SCGF, CCGF (current truncation to singles and doubles)

energy ~ 10 MeV

Watson:

Multiple scattering expansion, e.g. spectator expansion (current truncation to two active particles)

Spectator Expansion:

Siciliano, Thaler (1977)

Picklesimer, Thaler (1981)

Chinn, Elster, Thaler, Weppner (1995)

Expansion in:

- particles active in the reaction
- antisymmetrized in active particles

Intended for "fast reaction", i.e. ≥ 80 MeV

Ingredients:

1) realistic nuclear interaction

must describe target and projectile

2) controllable structure framework

here, no-core shell model (NCSM and SA-NCSM

3) controllable reaction framework

here, spectator expansion

4) a way to connect everything

Ingredients:

- 1) realistic nuclear interaction
 - must describe target and projectile
- 2) controllable structure framework

here, no-core shell model (NCSM and SA-NCSM)

3) controllable reaction framework

here, spectator expansion

4) a way to connect everything

s + astronomy

	$E(^{3}\mathrm{H})$	$E(^{3}\text{He})$	$E(^{4}\text{He})$	$r_p(^4\text{He})$
NNLO	-8.249	-7.501	-27.759	1.43(8)
NNLO+NNN	-8.469	-7.722	-28.417	1.43(8)
Experiment	-8.482	-7.717	-28.296	1.467(13)

Ekström et al., PRL 110, 192502 (2013)

Ingredients:

1) realistic nuclear interaction

must describe target and projectile

- 2) controllable structure framework
 - here, no-core shell model (NCSM and SA-NCSM)
- 3) controllable reaction framework
 - here, spectator expansion of Watson multiple scattering series
- 4) a way to connect everything

s + astronomy

	$E(^{3}\mathrm{H})$	$E(^{3}\text{He})$	$E(^{4}\text{He})$	$r_p(^4\text{He})$
NNLO	-8.249	-7.501	-27.759	1.43(8)
NNLO+NNN	-8.469	-7.722	-28.417	1.43(8)
Experiment	-8.482	-7.717	-28.296	1.467(13)

Ekström et al., PRL 110, 192502 (2013)

Ingredients:

- 1) realistic nuclear interaction
 - must describe target and projectile
- 2) controllable structure framework
 - here, no-core shell model (NCSM and SA-NCSM)
- 3) controllable reaction framework
 - here, spectator expansion of Watson multiple scattering series
- 4) a way to connect everything

+ astronomy

	$E(^{3}\mathrm{H})$	$E(^{3}\text{He})$	$E(^{4}\text{He})$	r_p (⁴ He)
NNLO	-8.249	-7.501	-27.759	1.43(8)
NNLO+NNN	-8.469	-7.722	-28.417	1.43(8)
Experiment	-8.482	-7.717	-28.296	1.467(13)

Ekström et al., PRL 110, 192502 (2013)

Leading order in spectator expansion can be computed *ab initio*

Framework for ab initio Elastic Scattering

Setting up the *ab initio* framework

$$\begin{pmatrix} effective \\ interaction \end{pmatrix} = \begin{pmatrix} thing that puts \\ them together \end{pmatrix} X \begin{pmatrix} reaction \\ information \end{pmatrix} X \begin{pmatrix} structure \\ information \end{pmatrix}$$

NN interaction represented by Wolfenstein amplitudes

s + astronomy

$$\overline{M}(q, \mathcal{K}_{NN}, \epsilon) = \underline{A}(q, \mathcal{K}_{NN}, \epsilon) \mathbf{1} \otimes \mathbf{1} + iC(q, \mathcal{K}_{NN}, \epsilon) (\sigma^{(0)} \cdot \hat{n}) \otimes \mathbf{1} + iC(q, \mathcal{K}_{NN}, \epsilon) (\sigma^{(0)} \cdot \hat{n}) \otimes \mathbf{1} + iC(q, \mathcal{K}_{NN}, \epsilon) \mathbf{1} \otimes (\sigma^{(i)} \cdot \hat{n}) + iC(q, \mathcal{K}_{NN}, \epsilon) \mathbf{1} \otimes (\sigma^{(i)} \cdot \hat{n}) + [G(q, \mathcal{K}_{NN}, \epsilon) - H(q, \mathcal{K}_{NN}, \epsilon)] (\sigma^{(0)} \cdot \hat{q}) \otimes (\sigma^{(i)} \cdot \hat{q}) + [G(q, \mathcal{K}_{NN}, \epsilon) - H(q, \mathcal{K}_{NN}, \epsilon)] (\sigma^{(0)} \cdot \hat{\chi}) \otimes (\sigma^{(i)} \cdot \hat{\chi}) + [G(q, \mathcal{K}_{NN}, \epsilon) + H(q, \mathcal{K}_{NN}, \epsilon)] (\sigma^{(0)} \cdot \hat{\chi}) \otimes (\sigma^{(i)} \cdot \hat{\chi}) + D(q, \mathcal{K}_{NN}, \epsilon) \left[(\sigma^{(0)} \cdot \hat{q}) \otimes (\sigma^{(i)} \cdot \hat{\chi}) + (\sigma^{(0)} \cdot \hat{\chi}) \otimes (\sigma^{(i)} \cdot \hat{q}) \right]$$

 $(0) \qquad p \qquad \downarrow \downarrow \downarrow \qquad p' \rightarrow \uparrow \downarrow$

Setting up the *ab initio* framework

$$\begin{pmatrix} effective \\ interaction \end{pmatrix} = \begin{pmatrix} thing that puts \\ them together \end{pmatrix} X \begin{pmatrix} reaction \\ information \end{pmatrix} X \begin{pmatrix} structure \\ information \end{pmatrix}$$

physics + astronomy

physics + astronomy

Beyond NCSM: SA-NCSM One-Body Densities

NNLO_{opt} chiral potential

NNLO_{opt} chiral potential

 $\langle 4\rangle 6, \varepsilon > 10^{-2}$

Expt.

⁴⁰Ca(*p*, *p*)⁴⁰Ca

50

60

70

UNIVERSITY

40

Beyond NCSM: SA-NCSM One-Body Densities

What we learned so far:

0

Consistent approach to p+A effective interaction in leading order multiple scattering expansion is possible.

(spin of projectile and struck target nucleon treated consistently)

- In the multiple scattering approach the leading order term can be calculated consistently *ab initio* for light nuclei based on NCSM SA-NCSM is being explored for medium-mass nuclei
 - Some indication that the leading order the spectator expansion describes elastic scattering data better for open-shell (deformed) and exotic nuclei than densely packed closed shell nuclei (good for providing predictions for optical potential fits in exotic regime)

We plan a study of Mg isotopes with the SA-NCSM – data at 65 MeV available

Ongoing work: move beyond nuclei with 0⁺ ground states Transition potentials for inelastic scattering

Backup slides

Beyond NCSM: SA-NCSM One-Body Densities

cs + astronomy

NNLO_{opt} chiral potential

What about different chiral NN interactions ?

Description of NN data below ~ 130 MeV almost identical

NNLO_{opt} Fitted to about 125 MeV NN E_{lab}

LENPIC – SCS

Semi-local coordinate space regulator R=1 fm Sometimes referred to as EKM (fitted up to about 300 MeV NN E_{iab})

Daejeon 16

Starts from Idaho N3LO, applies SRG transformation A.M. Shiroko And represents in HO basis On-shell equivalent to Idaho N3LO (fitted to about 300 MeV NN E_{lab})

Baker, Burrows, Elster, Launey, Maris, Popa, Weppner, PRC 108, 044617 (2023)

PRL 110, 192502 (2013) PHYSICAL REVIEW LETTERS week ending 10 MAY 2013

Optimized Chiral Nucleon-Nucleon Interaction at Next-to-Next-to-Leading Order

A. Ekström,^{1,2} G. Baardsen,¹ C. Forssén,³ G. Hagen,^{4,5} M. Hjorth-Jensen,^{1,2,6} G. R. Jansen,^{4,5} R. Machleidt,⁷
 W. Nazarewicz,^{5,4,8} T. Papenbrock,^{5,4} J. Sarich,⁹ and S. M. Wild⁹

PRL 115, 122301 (2015) PHYSICAL REVIEW LETTERS

week ending 18 SEPTEMBER 2015

Precision Nucleon-Nucleon Potential at Fifth Order in the Chiral Expansion

E. Epelbaum,¹ H. Krebs,¹ and U.-G. Meißner^{2,3,4}

Physics Letters B 761 (2016) 87-91

N3LO NN interaction adjusted to light nuclei in ab exitu approach

A.M. Shirokov^{a,b,c,*}, I.J. Shin^d, Y. Kim^d, M. Sosonkina^e, P. Maris^b, J.P. Vary^b

+ astronomy

Differential Cross Sections

Bands indicate Dependence on Oscillator parameter

Energy dependence for small momentum transfer is different

UNIVERSITY

Baker, Burrows, Elster, Maris, Popa, Weppner, PRC 108, 044617 (2023)