Probing the pygmy dipole resonance of 50Ca by Coulomb excitation

26/06/2024

Lemarié Julien - DREB 24

- Giant resonances \rightarrow collective phenomenon observed in every nuclei

- Giant Dipole Resonance is a mode were proton and neutron vibrate in phase opposition

- Giant resonances \rightarrow collective phenomenon observed in every nuclei
- Giant Dipole Resonance is a mode were proton and neutron vibrate in phase opposition
- Neutron rich nuclei \rightarrow Low lying dipole strength near S_n
- \rightarrow Pygmy Dipole Resonance (PDR)

- Giant resonances \rightarrow collective phenomenon observed in every nuclei
- Giant Dipole Resonance is a mode were proton and neutron vibrate in phase opposition
- Neutron rich nuclei \rightarrow Low lying dipole strength near S_n
- \rightarrow Pygmy Dipole Resonance (PDR)

- Giant resonances \rightarrow collective phenomenon observed in every nuclei

- Giant Dipole Resonance is a mode were proton and neutron vibrate in phase opposition

- Neutron rich nuclei \rightarrow Low lying dipole strength near S_n
- \rightarrow Pygmy Dipole Resonance (PDR)

- PDR → Constrain on density dependence of symmetry energy [**J. Piekarewicz, PRC 73 (2006), X.Roca-Maza, PRC 92(2015)**]

Extracted from: [**X.Roca-Maza, PRC 92(2015)**]

5/33

- In [Egorova, PRC 94 (2016), Inakura PRC 84 (2011)] it is shown that a sudden change in the PDR strength may arise
- Certain neutron orbits enhance the PDR
 → Shell effect

Fig. 2 from [Inakura PRC 84 (2011)]

- In [Egorova, PRC 94 (2016), Inakura PRC 84 (2011)] it is shown that a sudden change in the PDR strength may arise
- Certain neutron orbits enhance the PDR
 → Shell effect

 \rightarrow Study of ^{52,50}Ca PDR by Coulomb excitation

• Focus on ⁵⁰Ca in this presentation

Adapted from [Inakura PRC 84 (2011)]

Introduction: Coulomb excitation

- Inverse kinematics on Pb target
- Virtual photon absorption by 50Ca
 → ⁵⁰Ca velocity ~ 0.6c
 - \rightarrow Relativistic one-step interaction

- Experiment \rightarrow RIKEN RIBF
- ⁷⁰Zn primary beam on thick Be target
- Fragment separated in flight by BigRIBS (Radioactive Ion Beam Separator)

 \rightarrow Secondary beam of ⁵⁰Ca @ 223 MeV/A

Introduction: The experiment

- ⁷⁰Zn primary beam on thick Be target
- Fragment separated in flight by BigRIBS
 - \rightarrow Secondary beam of ⁵⁰Ca @ 223 MeV/A

Targets → Pb, C (+ background measurement)

 \rightarrow Invariant mass spectroscopy:

$$E_{x}({}^{50}Ca) = \sum_{i}^{N} E_{y}^{i} + \sum_{i}^{N} E_{n}^{i} + S_{n}$$

- NeuLAND + NEBULA → Plastic scintillator wall → Neutron detection
- BDCs + FDCs + HODF → Beam and fragment tracking, and particle identification

Results

26/06/2024

Lemarié Julien - DREB 24

• <u>49Ca+n channel (Pb target):</u>

• <u>49Ca+n channel (Pb target):</u>

500

- 2 strong correlation of E_{χ} and E_n at $E_{\gamma} = 2.0$ MeV and $E_{\gamma} = 3.3$ MeV

Results for 49Ca+n: 🎖 and neutron energy spectra

- <u>49Ca+n channel (Pb target):</u>
- 2 strong correlation of E_{γ} and E_{n} at $E_{\gamma} = 2.0$ MeV and $E_{\gamma} = 3.3$ MeV
- High population of first excited state of 49Ca
 → Indication of statistical decay (2p-2h state)

Results for 49Ca+n: 🎖 and neutron energy spectra

- <u>49Ca+n channel (Pb target):</u>
- 2 strong correlation of E_Y and E_n at E_Y = 2.0 MeV and E_Y = 3.3 MeV
- High population of first excited state of 49Ca
 → Indication of statistical decay (2p-2h state)
- En spectra → Structure at low energy (more details further)

• <u>48Ca+n+n channel (Pb target):</u>

- <u>48Ca+n+n channel (Pb target):</u>
- Strong correlation of E_γ with E_{nn} at E_γ = 3.8 MeV (⁴⁸Ca first excited state)
 - Width of peak → addback algorithm efficiency

- <u>48Ca+n+n channel (Pb target):</u>
- Strong correlation of E_γ with E_{nn} at E_γ = 3.8 MeV (⁴⁸Ca first excited state)
 - Width of peak → addback algorithm efficiency
- Peak at E_Y ≈ 700 keV → transition at higher energies

- <u>48Ca+n+n channel (Pb target):</u>
- Strong correlation of E_γ with En at E_γ = 3.8 MeV (⁴⁸Ca first excited state)
 - Width of peak → addback algorithm efficiency
- Peak at E₈ = 700 keV → transition at higher energies
- Wide structure around Enn = 2.5 MeV

Results: Inclusive cross sections

Inclusive cross section determined → Uncertainties: statistical and systematic

For Pb Target:

 $\sigma_{inc}(^{49}Ca) > \sigma_{inc}(^{48}Ca)$

For C Target:

 σ_{inc} ⁽⁴⁹Ca) $\approx \sigma_{inc}$ ⁽⁴⁸Ca)

	⁴⁹ Ca (mb)	⁴⁸ Ca (mb)
Pb target	351.7 ± 15.0	274.9 ± 14.0
C target	73.1 ± 2.5	70.9 ± 2.4

Results: Differential cross section \rightarrow 49Ca + n

<u>Differential</u> cross sections for 49Ca+n (stat uncertainties only):

- Integral for Pb \rightarrow 192.9 ± 6.8 mb
- Integral for C \rightarrow 13.1 ± 0.9 mb

Results: Differential cross section \rightarrow 49Ca + n

Differential cross sections for 49Ca+n (stat uncertainties only):

- Integral for Pb \rightarrow 192.9 ± 6.8 mb
- Integral for C \rightarrow 13.1 ± 0.9 mb

Two sharp peaks for Pb:

~ 400 keV \rightarrow Near neutron threshold

~ 1.2 MeV

<u>One peak for C:</u>

~ 1.4 – 1.6 MeV

Results: Differential cross section \rightarrow 49Ca + n

Differential cross sections for 49Ca+n (stat uncertainties only):

One peak for C:

~ 1.4 – 1.6 MeV

- Integral for Pb \rightarrow 192.9 ± 6.8 mb
- Integral for C \rightarrow 13.1 ± 0.9 mb

Two sharp peaks for Pb:

~ 400 keV \rightarrow Near neutron threshold

~ 1.2 MeV

Structure near neutron emission energy threshold \rightarrow Candidate for PDR

dσ/dE [mb/MeV] Pb 2 8 10 Δ 6 E_n [MeV] 0.0 0.0 0 0 0.4 0.3 С 0.2 0.1 2 0 4 6 8 10

 E_n [MeV]

Results: Coulomb excitation cross section \rightarrow 49Ca+n

Nuclear contribution can be determined:

 $\sigma_{CoulEx} = \sigma_{Pn} - \Gamma \sigma_C$

with:

$$\Gamma = \frac{A_{beam}^{1/3} + A_{Pb}^{1./3.}}{A_{beam}^{1/3} + A_C^{1/3}} \approx 1.6$$

[K. Boretzky, PRC 68, (2003)]

Results: Coulomb excitation cross section \rightarrow 49Ca+n

Nuclear contribution can be determined:

 $\sigma_{CoulEx} = \sigma_{Pn} - \Gamma \sigma_C$

with:

$$\Gamma = \frac{A_{beam}^{1/3} + A_{Pb}^{1/3.}}{A_{beam}^{1/3} + A_C^{1/3}} \approx 1.6$$

[K. Boretzky, PRC 68, (2003)]

Coulomb excitation cross section: → 171.9 ± 6.9 mb

Summary

- Shell effect on the PDR for many species
- Coulomb excitation reaction → 50Ca + Pb to probe its Pygmy Dipole Resonance
- Apparent resonances on neutron energy spectrum

- Simulations to determine the response function
- \rightarrow Determine α_D and compare with ^{52}Ca data

Lemarié Julien - DREB 24

Addback algorithm (48Ca levels)

GEANT4 simulation, 1 million events, point source of:

 \rightarrow First level of 48Ca (3.8MeV)

 \rightarrow First five levels of 48Ca (3.8, 4.3, 4.5, 4.6 MeV)

C spectrum 49Ca

C spectrum 48Ca

33/33