

INFN-LNGS

Using (d,p) Transfer Reactions at OEDO-SHARAQ to Measure Astrophysical Reactions Important in *r*- and *vp*- processes

Thomas Chillery

For the SAKURA Collaboration

Postdoc Researcher

DREB 2024

25th June 2024

Outline

 $^{56}Ni(d,p)$

RILACII

RI poduction

Materials

Biology

Space

Multi-RI Production

Spring 2022

28GHzECRIS

SLOWRI (R&D)

BigRIPS

ZDS

OEDO

(High-resolution beamline) SHARAQ

RILAC

GARIS GARISII

IRC

Return BT

- Motivation + Goal
 - SH18: *r*-process Nucleosynthesis ¹³⁰Sn(d,p)
 - SH19: *vp*-process in CCSNe
- Experimental Method
 - Surrogate Ratio
- Experimental Setup
 - BigRIPS + OEDO-SHARAQ
 - TiNA Detector Array
- Preliminary Analysis
 - Beam PID
 - TiNA Proton Spectra
 - Ionisation Chamber
- Conclusions and Future Outlook

e-RI scattering with SCRIT

SAMURAI

Rare RI ring

50 m

¹³⁰Sn(n, γ) Motivation

Credit: X-ray: NASA/CXC/RIKEN & GSFC/T. Sato *et al*; Optical: DSS

Credit: University of Warwick/Mark Garlick

Where do the heavy neutron-rich isotopes come from?

- *r*-process nucleosynthesis
 - CCSNe and/or NS-mergers
 - Large neutron density: 10^{20-26} cm⁻³

n-capture on Tin

• Models disagree on reaction rate by several orders magnitude

Reaction Rate [cm³s⁻¹mol⁻¹]

M.R. Mumpower et al. Prog. Part. Nucl. Phys. 86 (2016) 86-126

⁵⁶Ni(n,p) Motivation

Goals

¹³⁰Sn(d,p)

Measure 130 Sn(d,p) ~ 22 MeV/nucleon

Determine CN and DRC cross-section components for γ-decay channel

Reaction Rate [cm³s⁻¹mol⁻¹] 10⁹ **Sn** Z=50 10^{7} 10^{5} **CN + DRC** 10^{3} CN 10¹ T = 1 10^{-1} 50 60 70 80 90 100 110 **Neutron Number** Y. Xu and S. Goriely et al. PRC 90 (2014) 024604

⁵⁶Ni(d,p)

Measure ⁵⁶Ni(d,p) ~ 15 MeV/nucleon

Determine cross sections for p-decay channel

Surrogate Ratio

For CN component of $\sigma_{(n,\gamma)}$: Surrogate ratio method

Surrogate Ratio

W. Tornow et al. EPJ Web. Conf. 146 (2017) 09013

How to measure decay probability? (P_{γ})

R.L. Kozub et al. PRL 109 (2012) 172501

Recent OEDO Publications

July 2023 OEDO Beam Optics

Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Volume 540, July 2023, Pages 194-198

OEDO-SHARAQ system: Multifaceted performances in low-energy RI production and high-resolution spectroscopy

<u>S. Michimasa</u>^a <u>A</u> <u>B</u>, <u>T. Chillery</u>^a, <u>J.W. Hwang</u>^b, <u>T. Sumikama</u>^c, <u>S. Hanai</u>^a, <u>N. Imai</u>^a, <u>M. Dozono</u>^d, <u>S. Ota</u>^e, <u>D.S. Ahn</u>^b, <u>S. Hayakawa</u>^a, <u>Y. Hijikata</u>^d, <u>K. Kameya</u>^f, <u>K. Kawata</u>^a, <u>R. Kojima</u>^a, <u>K. Kusaka</u>^c, <u>J. Li</u>^a, <u>K. Miki</u>^f, <u>M. Ohtake</u>^c, <u>Y. Shimizu</u>^c, <u>D. Suzuki</u>^c, <u>H. Suzuki</u>^c, <u>H. Takeda</u>^c, <u>K. Yako</u>^a, <u>Y. Yanagisawa</u>^c, <u>K. Yoshida</u>^c, <u>M. Yoshimoto</u>^c, <u>S. Shimoura</u>^{c a}

November 2023 OEDO Day-0 Experiment

JOURNAL ARTICLE

Studying the impact of deuteron non-elastic breakup on ³³Zr + d reaction cross sections measured at 28 MeV/nucleon ³

Thomas Chillery 🕿, Jongwon Hwang, Masanori Dozono, Nobuaki Imai, Shin'ichiro Michimasa, Toshiyuki Sumikama, Nobuyuki Chiga, Shinsuke Ota, Shinsuke Nakayama, Deuk Soon Ahn, Olga Beliuskina, Kazuya Chikaato, Naoki Fukuda, Seiya Hayakawa, Eiji Ideguchi, Kotaro Iribe, Chihiro Iwamoto, Shoichiro Kawase, Keita Kawata, Noritaka Kitamura, Kensuke Kusaka, Shoichiro Masuoka, Hareru Miki, Hiroari Miyatake, Daisuke Nagae, Ryo Nakajima, Keita Nakano, Masao Ohtake, Shunichiro Omika, Hooi Jin Ong, Hideaki Otsu, Hiroyoshi Sakurai, Philipp Schrock, Hideki Shimizu, Yohei Shimizu, Xiaohui Sun, Daisuke Suzuki, Hiroshi Suzuki, Motonobu Takaki, Maya Takechi, Hiroyuki Takeda, Satoshi Takeuchi, Takashi Teranishi, Rieko Tsunoda, He Wang, Yukinobu Watanabe, Yutaka X Watanabe, Kathrin Wimmer, Kentaro Yako, Hiroki Yamada, Kazunari Yamada, Hidetoshi Yamaguchi, Lei Yang, Rikuto Yanagihara, Yoshiyuki Yanagisawa, Hiroya Yoshida, Koichi Yoshida, Susumu Shimoura S. Michimasa *et al.* NIM B 540 (2023) 194 - 198
T. Chillery *et al.* PTEP 121D01 (2023)
N Imai *et al.* PLB 850 (2024) 138470

March 2024 First Transfer Measurement at OEDO

Physics Letters B Volume 850, March 2024, 138470

Letter

Neutron capture reaction cross-section of 79 Se through the 79 Se(d,p) reaction in inverse kinematics

N. Imai^a A M. Dozono^{a¹}, S. Michimasa^a, T. Sumikama^c, S. Ota^{a²}, S. Hayakawa^a,
J.W. Hwang^{a^b}, K. Iribe^d, C. Iwamoto^a, S. Kawase^e, K. Kawata^a, N. Kitamura^a, S. Masuoka^a,
K. Nakano^e, P. Schrock^a, D. Suzuki^c, R. Tsunoda^a, K. Wimmer^{f³}, D.S. Ahn^{c^b}, O. Beliuskina^{a⁴},
N. Chiga^c, N. Fukuda^c, E. Ideguchi^h, K. Kusaka^c, H. Mikiⁱ, H. Miyatake^g, D. Nagae^c, S. Ohmika^j,
M. Ohtake^c, H.J. Ong^h, H. Otsu^c, H. Sakurai^c, H. Shimizu^a, Y. Shimizu^c, X. Sun^c, H. Suzuki^c,
M. Takaki^a, H. Takeda^c, S. Takeuchiⁱ, T. Teranishi^d, Y. Watanabe^e, Y.X. Watanabe^g, K. Yako^a,
H. Yamadaⁱ, H. Yamaguchi^a, L. Yang^a, R. Yanagihara^h, Y. Yanagisawa^c, K. Yoshida^c,

Experimental Setup: TiNA

TiNA: Silicon + CsI telescope detector array

- Measure charged particles at $\theta_{lab} = 100^{\circ} 172^{\circ}$
- Solid angle coverage: ~ 50%

¹³⁰Sn Condition at Secondary Target

•

Well-focused beamspot on $\Phi = 50 \text{ mm}$ target

• Good energy compression, ~ 5%

thomas.chillery@lngs.infn.it

Data Analysis: A/Q

- Part of total data (YY1)
- Gates: Beam PID, beamspot
- Very preliminary!

Conclusions and Future Outlook

- Spring 2022: BigRIPS-OEDO beamline successfully produced low-energy beams
- SH18: ^{124,130}Sn, and ¹³⁰Te [S. Bae, H. Tanaka, T. Chillery, T. Haginouchi]
 - $\sigma_{n-capture} \rightarrow r$ -process models \rightarrow astrophysics sites
 - Reaction components (CN vs DRC)
- SH19: ^{56,58}Ni [**S. Ishio, J. Li**]
 - $\sigma_{p-decay} \rightarrow vp$ -process in CCSNe \rightarrow p-rich nucleosynthesis
- Offline analysis is ongoing
 - Ionisation chamber PID
 - TiNA proton energy spectra -> Excitation functions for ¹³⁰Sn and ⁵⁶Ni
- Wednesday 11:20 Talk by Carlos Ferrera: ⁵⁰Ca(d,p)⁵¹Ca @ 15 MeV/u
- Future nuclear structure experiment: ⁸⁰Sr(p,t)⁷⁸Sr [J. W. Hwang]

The SAKURA Collaboration

- T. Chillery, N. Imai, S. Hanai, S. Michimasa, R. Yokoyama, K. Okawa, S. Hayakawa, R. Kojima, J. Li, N. Ma, T. Saito, K. Kawata, S. Shimoura | Center for Nuclear Study, University of Tokyo
- J. W. Hwang, D.S. Ahn | Center for Exotic Nuclear Studies, Institute for Basic Science (IBS)
- T. Sumikama, D. Suzuki, H. Suzuki, N. Fukuda, H. Takeda, Y. Shimizu, M. Yoshimoto, Y. Togano | RIKEN Nishina Center for Accelerator-Based Science
- Y. Hijikata, M. Dozono, R. Yoshida | Department of Physics, Kyoto University
- F. Endo, T. Haginouchi, N. Iwasa, S. Ishio, M. Egeta | Department of Physics, Tohoku University
- H. Tanaka, T. Teranishi | Department of Physics, Kyushu University
- S. Ota | Research Center for Nuclear Physics, Osaka
- B. Mauss | Nuclear Physics Laboratory, DAM, French Atomic Energy Commission (CEA)

Funding from

JSPS KAKENHI grants 19H01903 and 19H01914

Ministry of Science and ICT, Korea grants IBS-R031-D1 and IBS-R031-Y2

CAS Western Light research fund.

Extra Slides

SH18 Motivation

Reaction Mechanisms

- Two processes: DRC and CN
- Largely unmeasured in exotic region
- CN dominates at N = 80

- ¹³⁰Sn(d,p)¹³¹Sn measured at 4.8 MeV/u by Kozub *et al*.
 - DRC determined
 - Only protons measured no γ 's or recoils
 - Could not extract CN component

GOAL: Measure ¹³⁰Sn(d,p) ~ 23 MeV/u

Experimental Method: Surrogate Ratio

New method applied to the ⁵⁶Ni(d,p)X reaction

Courtesy: D. Suzuki

→ Reference surrogate data of ⁵⁸Ni will be used for control

DRC and CN Reaction Mechanisms

Data sets

Exp.	Purpose	Beam	Target	Irradiation Time [hr]
SH18	Physics	¹³⁰ Sn		40
	Reference	¹³⁰ Te	$CD_2 287 \mu g/cm^2$	20
	Sys. Error	Sys. Error ¹²⁴ Sn		18
	Isomer Meas.	¹³⁰ Sn	A1.0.9mm	1
		¹²⁴ Sn	AI 0.811111	0.3
Exp.	Purpose	Beam	Target	Irradiation Time [hr]
SH19	Diana	56NT:	$CD_2 644 \mu g/cm^2$	22
	Physics	⁵⁰ IN1	$CD_2 285 \mu g/cm^2$	32
	Reference	⁵⁸ Ni	$CD_2 285 \mu g/cm^2$	24
	CsI Calibration	⁵⁶ Ni	Al 0.8mm	3

Beam	F1 Mom. Slit.	Energy [MeV/u]		Rate [kpps] (purity)		Trans.	
		F3	S0	F3	S0	F 3 – 50	
¹³⁰ Sn	± 0.5%	170	22.9	185 (50%)	160 (50%)	~ 85%	
⁵⁶ Ni	± 0.5%	113	15.5	482 (33%)	356 (33%)	~ 85%	

PTEP 2019		
Trans. F3 – S0 18%		
\rightarrow 4X increase		

OEDO: Principle

OEDO configuration

F3-FE10 TOFt(ms)as.chillery@lngs.infn.it

Data Analysis: Beam PID

SH18: ¹³⁰Sn(d,p)

SH19: ⁵⁶Ni(d,p)

Data Analysis: SR-PPACs and TiNA Courtesy: D. Suzuki

TiNA: T. Haginouchi (Tohoku)

E- ΔE plot by selecting incident angles

Courtesy: T. Haginouchi

TiNA: Energy calibration with triple- α source

TTT and YY1 •

CsI ٠

Counts / 400 keV

Sn=5.9 MeV

30

25

20

- Part of total data (YY1)
- Gates: Beam PID, beamspot
- Very preliminary!

¹³⁰Sn(d,p)

Courtesy: T. Haginouchi

Ideal IC PID (⁹³Zr)

From OEDO day0 exp. measuring 93 Zr + d reactions

