DREB Conference 2024

Contribution ID: 62

Type: Oral presentation

Probing the size of single-particle orbitals in neutron-rich calcium isotopes from quasi-free scattering missing momentum distributions

Wednesday, 26 June 2024 09:40 (20 minutes)

Neutron-rich calcium isotopes show interesting features exhibiting non-canonical neutron shell closures at N=32 and N=34, while their charge radii [1] show a sharp increase after N=28 which is not reproduced by microscopic theories. Matter radii [2] from interaction cross-section measurements indicate that the increase in size of neutron-rich calcium isotopes is mainly due to neutrons and that a core swelling mechanism is at play [3].

Recently, the proton-induced neutron knockout reaction on 52 Ca proved to be able to quantify the size of the $p_{3/2}$ and $f_{7/2}$ neutron single-particle orbital using the analysis of the momentum distributions [4]. The result revealed a large $p_{3/2}$ neutron orbital, 0.61 fm larger compared to the $f_{7/2}$ neutron single-particle orbital, which may explain [5] the large charge radius values obtained for the neutron-rich calcium isotopes [1].

This analysis was extended to 53 Ca and 54 Ca for the neutron orbitals, giving consistent results with the first findings, as well as for 52 Ca, 54 Ca, and 55 Sc for the proton single-particle orbitals. The latest results will be shown in this presentation.

The nucleon knockout direct reaction proves to be a valuable tool, sensitive to the size of the single-particle orbitals - a quantity that has not been deeply explored so far for exotic beams.

References:

- [1] R. F. Garcia Ruiz et al., Nature Physics 12, 594-598 (2016).
- [2] M. Tanaka et al., Phys. Rev. Lett. 124, 102501 (2020).
- [3] W. Horiuchi and T. Inakura Phys. Rev. C 101, 061301(R) (2020).
- [4] M. Enciu et al., Phys. Rev. Lett. 129, 262501 (2022).
- [5] J. Bonnard, S. M. Lenzi, and A. P. Zuker, Phys. Rev. Lett. 116, 212501 (2016).

Collaboration

Primary author: ENCIU, Madalina (TU Darmstadt)

Presenter: ENCIU, Madalina (TU Darmstadt)

Session Classification: Wednesday morning 1