

Probing the size of single-particle orbitals in neutron-rich calcium isotopes from quasi-free scattering missing momentum

Mădălina Enciu

IKP, TU Darmstadt

DREB – Direct Reactions with Exotic Beams

Wiesbaden, June 24th - 28th 2024

The charge radii of neutron-rich Ca isotopes

Charge radii measurements via isotope shift method •

• Steep linear increase from N = 28 to N=32

Bonnard et al. proposed a **0.7 fm** larger 1p_{3/2} (1p_{1/2}) neutron orbital than Of_{7/2} (Of_{5/2})

Charge radius increases as neutrons are added

TECHNISCHE

UNIVERSITÄT DARMSTADT

- R. F. Garcia Ruiz et al., Nature Physics 12 (2016)
- Á. Koszorús et al., Nature Physics 17 (2021)
- J. Bonnard et al., Phys. Rev. Lett. 116 (2016)

The matter radii of neutron-rich Ca isotopes

- Matter radii measurements via interaction cross section measurements
- Steep linear increase from N = 28 to N=32
- Neutron radii contribute the most to the increase of matter radii,
 - but protons also present an increase
 - \rightarrow Swelling core as one fills a nodal or j-lower orbit such as 1p or $0f_{5/2}$

0.12

P 0.08

0.12

P. 0.08

Neutron

W. Horiuchi et al. (2020)

- Strong interaction between $vp_{1/2}$ orbitals and neutron and proton $s_{1/2}$ orbitals
 - \rightarrow driving the $s_{1/2}$ orbitals away from center J. Liu et al. (2020)

References

M. Tanaka et al., Phys. Rev. Lett. 124 (2020)W. Horiuchi et al., Phys. Rev. C 101 (2020)J. Liu et al., Phys. Lett. B 806 (2020)

Probing the size of single particle orbitals in the neutron-rich calcium region / Mădălina Enciu / Slide 3

Matter radii Ca

The momentum distribution of the fragment fragment beam

 \bigcirc

particles are kinematically linked to the momentum distribution (and wave-function) of the knocked out nucleon

Probing the size of single-particle orbitals in neutron-rich calcium isotopes from quasi-free scattering missing momentum

Probing the size of single-particle orbitals in neutron-rich calcium isotopes from quasi-free scattering missing momentum

Acknowledgments:

The momentum distribution of the fragment particles are kinematically linked to the momentum distribution (and wave-function) of the knocked out nucleon

- Interpretation within DWIA framework
- Single-particle wave-function as bound state of Woods-Saxon potential
- → RMS radii of single-particle orbitals

All DWIA calculations shown in this presentation are performed by **K. Yoshida** and **K. Ogata**

Shell model calculations performed by F. Nowacki and A. Poves

Ab initio input for comparison by **T. Miyagi**

SEASTAR collaboration for the experimental part

Experimental setup

- experiment at **RIBF, RIKEN**, SEASTAR3 campaign (2017)
- ⁷⁰Zn primary beam at 345 MeV/u
- In-flight **y-ray spectroscopy** in inverse kinematics
- 15-cm liquid H₂ target (MINOS)
- 170 270 MeV/u beam energy at vertex
- MINOS TPC for vertex reconstruction
- DALI2+ γ-ray detector array
- NeuLAND and NEBULA detectors used for subtracting the (p,p') + n-evap.

References

NeuLAND: K. Boretzky, et al., Nucl. Instr. Meth. Phys. Res. A 1014 (2021)DALI2+: S. Takeuchi, et al., Nucl. Instr. Meth. Phys. Res. A 763 (2014)MINOS: A. Obertelli et al., Eur. Phys. J. A 50 (2014)

The pf-shell neutron orbitals of ⁵²Ca

The pf-shell neutron orbitals of ⁵²Ca

TECHNISCHE UNIVERSITÄT DARMSTADT

References: M. Enciu et al., PRL 129 (2022)

rms radii of single-particle (sp) neutron orbitals obtained by variation of the radial parameter r_0 and χ^2 minimization

Resulting rms radii: vf_{7/2} : 4.13(14) fm vp_{3/2}: 4.74(18) fm Difference: 0.61(23) fm

from HFB, SKM: **νf_{7/2}:** 4.12 fm **νp_{3/2}:** 4.49 fm Difference: 0.37 fm

The pf-shell neutron orbitals of ⁵³Ca

The pf-shell neutron orbitals of ⁵⁴Ca

TECHNISCHE

The sd-shell proton orbitals of ⁵³Ca

Rms radii of single-particle neutron orbitals

SFB

Probing the size of single particle orbitals in the neutron-rich calcium region / Mădălina Enciu / Slide 13

 systematic difference of 0.5 up to 0.75 fm between the f_{7/2} and p orbitals for ⁵³Ca and ⁵⁴Ca as found for ⁵²Ca

Rms radii of single-particle proton orbitals

SFB

Rms radii of single-particle proton orbitals

SFB

Amsterdam Univ. (Netherlands), 1990

Uncertainty estimations and checks

• uncertainties of rms radii dominated by experimental statistical uncertainties

larger uncertainties for (p,2p) with lower statistics

• choice of potential:

how the shape of momentum distribution changes and what is the impact on the determined rms radii?

• why do we only perform an **1-dimensional r** $_0$ variation?

comparison 1D r_0 variation vs 2D r_0 , a_0 variation of the Woods-Saxon potential parameters

• how do momentum distributions change when using **HFB wavefunction** or **transition amplitudes from state-of-the-art ab initio calculations**?

Choice of optical potential

used as input for the DWIA calculations

From ⁵²Ca $\nu p_{3/2}$ and $\nu f_{7/2}$:

 4.5% relative difference for the momentum distributions for the considered energy range and (r₀,a₀) combinations

From ⁵³Ca vp_{3/2} :

impact on $r_{\rm 0}$ and rms radii evaluated

• 0.10 fm for r₀ (8.1%)

• 0.16 fm for rms radius (3.5%)

Plots: ⁵²Ca vp_{3/2} and vf_{7/2} Folding (solid line) and Dirac (EDAD1, dashed line)

M. Enciu et al., PRL 129 (2022)

1D vs 2D variation: r_0 and a_0 for the WS potential

TECHNISCHE

UNIVERSITÄT

SFB

Woods-Saxon wavefunction vs ab initio input

TECHNISCHE UNIVERSITÄT DARMSTADT

ab initio amplitudes: $<^{54}Ca(0^+)|a^+_{nlj}|^{53}Ca(J^{\pi})>$ used for the DWIA calculations for $^{54}Ca(p,pn)$

— Woods-Saxon

DN2LOGO394hw16 EM1.8-2.0hw12 (HF) EM1.8-2.0hw16 (HF) EM1.8-2.0hw20 (HF)

N3LOEM500Inlhw16

- -- EM1.8-2.0hw12 (NAT)
- -- EM1.8-2.0hw16 (NAT)
- -- EM1.8-2.0hw20 (NAT)

Similar results for ⁵⁴Ca vp_{3/2} and vp_{1/2} orbitals

- frequency dependence
- wider momentum distributions
- lower rms radii
- poor fit to experimental data

Woods-Saxon wavefunction vs ab initio input

ab initio amplitudes: $<^{54}Ca(0^+)|a^+_{nlj}|^{53}K(J^{\pi})>$ used for the DWIA calculations for $^{54}Ca(p,2p)$

Legend:

— Woods-Saxon

- -- EM1.8-2.0hw12 (NAT)
- -- EM1.8-2.0hw16 (NAT)
- -- EM1.8-2.0hw20 (NAT)

Similar results for 52,54 Ca $\pi d_{3/2}$ and $\pi s_{1/2}$ orbitals

- no frequency dependence
- wider momentum distributions
- lower rms radii
- poor fit to experimental data

Size of pf-shell neutron and sd-shell proton orbitals in the neutron-rich calcium region / Mădălina Enciu / Slide 20

Rms radii of sp proton and neutron orbitals

[1] HFB calculations (HFBRAD code) with the SKM interaction

[2] Results from private communication withW. Horiuchi based on published work:W. Horiuchi et al., Phys. Rev. C 101 (2020)[Mean Field calculations]

[3] Results from private communication withJ. Liu (via H. Liu) based on published work:J. Liu et al., Phys. Lett. B 806 (2020)[Relativistic Hartree-Fock calculations]

IMSRG (full) one-body level: preliminary, ongoing work M. Heinz, T. Miyagi, A. Schwenk, A. Tichai

Charge radii of Calcium isotopes

SFB

HFB Interactions considered: SKM, SKM*, SIII, SII, Ska, Skb, SKI5, SLY4, SLY5; IMSRG calculations by M. Heinz Probing the size of single particle orbitals in the neutron-rich calcium region / Mădălina Enciu / Slide 22

Summary and Conclusions

• Calcium charge radii puzzle: steep increase from N=28 to N=32 (R. F. Garcia-Ruiz et al. 2016) matter radii present the same behavior (M. Tanaka et al. 2020)

J. Bonnard et al. 2016: vp orbitals larger than vf orbitals by 0.7fm for explaining the charge radii

W. Horiuchi et al. 2020: core swelling as one fills the $\nu p_{1/2}$, $\nu p_{3/2}$ and $\nu f_{5/2}$ orbitals

J. Liu et al. 2023: density evolution from ⁵²Ca to ⁵⁴Ca

• **Rms radii of proton and neutron orbitals in** ^{52,53,54}**Ca:** Neutrons: large difference between **vp and vf orbitals** Protons: an **increase in πsd** orbitals compared to ^{40,48}Ca

 From single-particle orbital rms radii to charge radii: agreement with the prediction of Bonnard for vp-vf the δ<r²>^{48,52} as well as R_{ch}^{52Ca} was reproduced evaluations for ⁵³Ca and ⁵⁴Ca charge radii

