

Spectroscopy of rare isotopes with the Active Target Time Projection Chamber

MICHIGAN STATE UNIVERSITY

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

D. Bazin

In-beam γ -ray vs missing mass methods

- In-beam γ -ray: spectroscopy relies solely on properties of beam-like residue
 - Inverse kinematics and high energy allow thick targets and small scattering angles \rightarrow high luminosity
 - Determination of partial cross sections needs to take into account **feeding** from higher energies
 - Lifetime of populated states cannot be to long (**isomer**)
 - Cross section to ground state cannot be directly measured (again, feeding...)
 - Cross section to **unbound states** difficult to measure (requires detection of emitted nucleon(s))
- Missing mass spectroscopy in inverse kinematics: using the target-like residue
 - Direct measurement of cross sections to populated states, **bound and unbound**
 - Lifetime of populated states doesn't matter
 - But inverse kinematics turns from a friend into a **foe**, large ranges of energies and scattering angles • Compromise between **resolution** and target **thickness** is necessary \rightarrow **low luminosity**

- Target thickness not constrained by energy resolution
 - Gains by up to 2 orders of magnitude in thickness
 - Pure gas targets H₂, D₂ and ^{3,4}He
 - Vertex and energy of each reaction measured
- Solid angle coverage not limited by angular resolution and/or cost
 - Detecting recoils inside target maximizes angular coverage
 - Geometrical efficiency close to 80%
 - Multiple reaction channels can be measured
- Inverse kinematics requirements
 - Need angular resolution < 1°
 - Need energy resolution < 200 keV

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

The promise of active targets

Recoils Beam

Target = Detector

Active Target Time Projection Chamber

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

AT-TPC @ SOLARIS

Solenoidal Spectrometer Apparatus for Reaction Studies

Two dual-mode solenoidal spectrometers

SOLARIS @ FRIB

- facilities
 - stability
 - ATLAS + RAISOR for

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

 Complementarity of detector setups • Si-array for $> 10^4$ pps • *AT-TPC* for < 10⁴ pps Complementarity of

• FRIB + ReA6 for isotopes far from

isotopes ±1n ±2n

HELIOS @ ATLAS

Update on performed measurements since 2020

- Transfer reaction commissioning
 - 10Be(d,p)¹¹Be, ¹⁰Be(d,d')¹⁰Be* and 10B(d,p)¹¹B (2020@SOLARIS)
 - See talk by Jie Chen on ¹⁰Be* (Thu 11:00)
 - See talk by Ben Kay on ¹⁰B(d,p)¹¹B measured with Si-array @ HELIOS (Thu 15:20)
- Resonant scattering
 - ${}^{16}O(\alpha, \alpha'){}^{16}O^*$ (2021@SOLARIS)
 - Search for ¹⁶O O⁺ Hoyle resonance
 - ${}^{10}Be(\alpha, \alpha'){}^{10}Be^*$ (2023@SOLARIS)
 - Search for 0⁺ deformed band-head resonance

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

- Campaign on transfer reactions (2023@HELIOS)
 - Reactions between ¹⁴C and p target
 - Reactions between ¹²Be and p target
 - Reactions between ¹⁵C and p, d targets
 - Quenching factors from transfer reactions
 - Reactions between ¹⁶C and p, d, α targets
 - See talk by Gordon McCann on ¹⁶C(d,p)¹⁷C (Thu 12:00)
 - Reactions between ⁷Be and d target
 - Search for unbound resonances in ⁶Be

Campaign at S800 (happening now!)

Transfer commissioning experiment: ¹⁰Be(d,p)¹¹Be

- Emergence of nuclear rotation
 - No core SM calculations of ¹¹Be
 - Absolute energy convergence not reached at N_{max}=10,11
 - Relative energies remarkably stable, show rotational bands
- Questions about 3/2 state around 3.4 MeV
 - $K^{P}=3/2^{-}$ band head $\rightarrow 3/2^{-}$
 - $K^{P}=1/2^{+}$ band member $\rightarrow 3/2^{+}$

U.S. Department of Energy Office of Science National Science Foundation Michigan State University Caprio, M.A. et al. Probing ab initio emergence of nuclear rotation. Eur. Phys. J. A 56, 120 (2020)

Particle identification in AT-TPC

- Magnetic rigidity
 - From curvature of track & polar angle
- Energy loss
 - From charge deposited along track
- Large dynamic range
 - Due to inverse kinematics
 - Logarithmic representation

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Analysis by Z. Serikow

Kinematics plot of ¹⁰Be(d,p)¹¹Be

- Acceptance effects of AT-TPC
 - Low energy cutoff at ~ 500 keV
 - Dependent on polar angle
 - Polar angle acceptance effects start at θ_{lab} < 20° and θ_{lab} > 160°
 - Gap centered at $\theta_{lab} = 90^{\circ}$ due to difficulty to analyze tracks perpendicular to beam axis
- Resolution effects of AT-TPC
 - Resolution degrading at higher energies
 - Due to limited track length at higher rigidities when target residues do not wrap around

D. Bazin, DREB 2024, June 24-28, 2024, Wiesbaden, Germany

9

Excitation energy spectrum and angular distributions

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

 10 Be beam (*a*) 10 MeV/u - 1000 pps / 5 days

Analysis by Z. Serikow

Parity identification of 3.4 MeV resonance

- Dip around 33° corresponds to 90° effect
- Comparison to DWBA seem to indicate 3/2+
- This resonance would be second member of "halo" band
- Determination of $0d_{3/2}$ single-particle energy in ¹¹Be

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

• Need to add acceptance effects from simulations to extract spectroscopic factors

11

- ¹⁰B contamination present in ¹⁰Be beam
- Large Q_{value}=9.23 MeV allows population of high-lying resonances in ¹¹B
- Strong interest in resonances at around 11 MeV due to several thresholds
- β -decay proton emission of ¹¹Be
- AT-TPC is capable of measuring particle decay residues of ¹¹B* resonances
- Branching ratios could inform on the structure of these resonances
- See talk by Ben Kay on ¹⁰B(d,p)¹¹B measured with Si-array @ HELIOS (Thu 15:20)

10B(d,p)11B

Analysis of ¹⁰B(d,p)¹¹B

Analysis by T. Schaeffeler

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

$^{10}B(d,p)^{11}B^* \rightarrow ^{7}Li + ^{4}He event from 10.6 MeV peak$

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

¹²Be reactions on proton target

 ¹²Be at ~12 MeV/u provided by the RAISOR separator from ATLAS ¹⁴C primary beam

Beam intensity 100 pps

- Pure ¹H₂ target at 600 Torr
- Equivalent CH₂ target thickness (number of protons): 110 mg/cm²

• 3 days of beam exposure

- Pre-kinematics plot from estimation phase showing $B\rho$ versus energy loss
- Kinematics lines from elastic, inelastic, (p,d) and a hint of (p,t) reactions

¹²Be elastic and inelastic on proton

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

12Be(p,d)11Be

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

12Be(p,t)10Be

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Outlook

- Active targets such as the AT-TPC offer a breakthrough in measurements of Direct Reactions with Exotic Beams
 - Luminosity gain of two to three orders of magnitude compared to passive targets, while retaining comparable resolutions
 - Transfer reaction cross sections (~ 10 mb/sr) now accessible at **100 pps**
 - Solid angle coverage allows measurements of full kinematics of reactions (target-like and beam-like residues)
- New avenues of exploration
 - Missing mass spectroscopy of exotic nuclei further from stability • Exploration of unbound resonances and **deformation** via rotational bands • Effects of continuum via study of unbound resonances near particle

 - decay thresholds

Upcoming upgrades

- Inner tube for rare gases (³He)
 - Limit cost of operation
 - Allow use of faster gas in detector region
 - Requires enough energy to punch through tube foil (12 μm polyamide)
- Zero degree detector telescope
 - Two DSSD Si detectors backed by CsI array
 - Identification of beam-like residues that scatter at small angles (~ < 10°)
 - Reduce pile-up using anti-coincidence with upstream ion chamber
 - Use AT-TPC in reverse configuration (like with S800)

- S800 campaign (happening now!)
 - GT strength in 32Na via ³²Mg(d,²He) Done!
 - PGR and GR in ¹¹Li via ¹¹Li(p,p')
- SOLARIS experiment (Fall 2024)
 - NP pairing in ⁵⁶Ni via ⁵⁶Ni(³He,p)
- RCNP campaign (early 2025)
 - 6 experiments approved
- Argonne campaign (late 2025)
 - 3 experiments approved

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

AT-TPC collaboration

