Towards Next-Generation In-Beam Gamma-Ray Spectroscopy at the RIBF with HYPATIA

N. Aoi¹, H. Baba², S. Chen³, M.L. Cortés², **P. Doornenbal**², Z. Elekes⁴, M. Enciu⁵, F. Flavigny⁶, T. Gao⁷, J. Gibelin⁶, E. Ideguchi¹, N. Imai⁸, A. Jungclaus⁹, Y. Kondo¹⁰, Y. Kubota², M. Labiche¹¹, J. Lee⁷, H. Liu¹², X. Liu⁷, W. Marshall^{2,3}, A. Matta⁶, S. Michimasa⁸, T. Nakamura¹⁰, A. Obertelli⁵, D. O'Donnell¹³, N.A. Orr⁶, H. Otsu², S. Paschalis³, **M. Petri³**, H. Sakurai², R. Shearman¹⁴, D. Sohler⁴, A. Stefanescu⁵, D. Suzuki², R. Taniuchi³, T. Uesaka², and V. Werner⁵

¹Research Center for Nuclear Physics, Osaka, Japan
 ²RIKEN Nishina Center, Wako, Japan
 ³University of York, York, United Kingdom
 ⁴ATOMKI, Debrecen, Hungary
 ⁵Technische Universität Darmstadt, Darmstadt, Germany
 ⁶LPC Caen, Caen, France
 ⁷University of Hong Kong, Hong Kong, China
 ⁸Center for Nuclear Study, University of Tokyo, Wako, Japan
 ⁹Consejo Superior de Investigaciones Científicas, Madrid, Spain
 ¹⁰Tokyo Institute of Technology, Tokyo, Japan
 ¹¹STFC Daresbury, Daresbury, United Kingdom
 ¹²Beijing Normal University, Beijing, China
 ¹³University of the West of Scotland, United Kingdom
 ¹⁴National Physical Laboratory, Teddington, United Kingdom

June 25, 2024

Introductory Comments

- In-beam γ -ray spectroscopy of exotic nuclei with fast beams is a powerful tool for nuclear structure and reaction studies
- We can assume that 2 p μ A ²³⁸U at 345 MeV/nucleon become available after RIBF upgrade
- DALI2⁺
 - High scientific production
 - Outdated detector technology, but very affordable
- GRETA, a 4π Ge tracking array in the US
 - 60 Mio USD project, fully funded
 - 30 quads, 25 available from 2025
- Focus not only on better energy resolution but also other quantities for a broad physics program
 - We want high efficiency, high P/T, excellent timing, high flexibility, easy maintenance
 - Produce cleanest possible spectra
 - Cost effective solution

In-Beam γ -Ray Spectroscopy at the RIBF

DALI2⁺ (From Fall 2023)

- 226 Nal(TI) detectors
 - In Collaboration with ATOMKI and HKU
- 46 Scionix (red)
- 92 Saint-Gobain \rightarrow
 - 10 from ATOMKI
- 88 DALI1-type \rightarrow
 - 10 from ATOMKI 70 from HKU
- Performance of 1 MeV γ -ray:
 - 7 % intrinsic energy resolution (FHWM)
 - 9 % energy resolution @ 100 MeV/nucleon
 - ► 35 % FEP efficiency with add-back

Scientific production: 104 peer-reviewed publications

- 2 Nature, 28 PRL, 27 PLB, 42 PRC, 7 others
- Expect \approx 130 publications in total
- pprox 20 publications at "old" facility

⁹Be(¹³⁸Te,¹³⁷Te+ γ) with DALI2⁺ The Benefit of Good Time Resolution

- In-beam γ -ray spectroscopy with fast beams always has background
 - Inelastic scattering on H as well as (p,pn) and (p,2p) has similar background
- "Good" γ rays from ejectile up to neutron-separation energy (2.5 MeV for ¹³⁷Te) in c.m. system
- Huge background time delayed by several ns
 - Cannot resolve with Ge detectors (14 ns FWHM at 1.33 MeV)
 - Background free spectroscopy with fast scintillators

Where to Measure with Fast Beams? The Three Magnetic Spectrometers of RIBF

- Inelastic scattering, knockout, quasi-free scattering A > 100
- Simultaneous mass, isomer spectroscopy/tagging

Inelastic scattering at reduced velocities

Inelastic scattering, knockout, quasi-free scattering A < 100

Invariant mass spectroscopy

Concept

DREB, Wiesbaden, June 24–28 2024 – 7

The Next Step: HYPATIA Transition to High-Resolution Scintillators

- HYPATIA: HYbrid Photon detector Array To Investigate Atomic nuclei
 - ✦ Named after first known female philosopher, astronomer, and mathematician

Performance Comparison for Fast Beams

Parameter	HYPATIA	DALI2+	GRETINA ¹	GRETA
Energy Resolution /% (FWHM)	5–6 ²	10	2	2
Time Resolution /ns (FWHM)	0.5–1.5	3	14	14
Efficiency at 1 MeV/ %	52	36	7	36
P/T %	0.72	0.54	0.4	0.51
Initial costs / Mio USD	7–9	1.5–2	12?	60?
Operation costs / year/ Mio USD	0.1	0.05	0.3	1.3 ³
Maintenance effort, manpower	low	low	high	high
Flexibility to change configuration	high	high	fixed radius	fixed radius
Time to change location	1 week	1–2 weeks	months	months
Analysis effort	low	low	high	high

Energy resolution depends on target thickness. Around 1.5–2 % for GRETA for thin targets

¹7 Quads

²Can be reduced to \approx 4.5 % if detector-target distance increased

³AGATA collaboration estimates operation costs 10.000 euro / crystal/year

Physics Opportunities

In-Beam Gamma-Ray Spectroscopy With a Liquid Hydrogen Target

SEASTAR IV, V, VI: "The Final Frontier"

 $2 p\mu A^{238} U$ @ 345MeV/nucleon (160 kW), \approx 30 days beam time

In-Beam γ -Ray Spectroscopy at the Isospin Limit

S. Chen et al., PLB 843, 138025 (2023).

In-Beam γ -Ray Spectroscopy at the Isospin Limit

- 2 p μ A primary beam of ²³⁸U
- 0.11 pps of ⁶¹Sc, from LISE++ including user cross section
- 150 mm IH2 target + 50 % transmission
- Cross section to 2^+ state from ${}^{57}Sc(p,2p){}^{56}Ca$ reaction
- PD, The HYPATIA Project

Inelastic Scattering on Liquid Hydrogen at 50 MeV/nucleon

S. Takeuchi et al., PRC 79, 054319 (2009).

Inelastic Scattering on Liquid Hydrogen at 50 MeV/nucleon

Lifetime Measurements With HYPATIA

- Can measure different lifetime ranges simultaneously
- Short lifetimes with forward wall HR-GAGG (shown is ⁷⁹Cu on 700 mg/cm² Be)
- Long lifetimes with CeBr3 barrel
- Direct lifetime measurements from excellent CeBr₃ time resolution
 - Time relative to fast plastic scintillator (no $\gamma \gamma$ necessary)

Status and First In-Beam Tests

DREB, Wiesbaden, June 24–28 2024 – 17

Status, HR-GAGG Crystals

Status, CeBr3 Crystals

- 4 x Hellma Crystals (30 x 30 x 80 mm³)
- 6 mm quartz window
- 4 x S14 (4x4) Hamamatsu SiPMs
- TMP37FT9Z Temperature sensor
- Wrapped and packaged by Scionix

1 x Hellma Crystals (30 x 30 x 80 mm³)
1 x Epic Crystal (28 x 28 x 80 mm³)
4x4 Hamamatsu S14 array - 1 mm quartz
TMP37FT9Z Temperature sensor
Wrapped and packaged in York

• γ RIBF-UK:

- \blacktriangleright 72 CeBr₃ crystals 18 quad modules
- Funded with 850k \pounds (160,000 k¥) for equipment, 3000k \pounds (5,550,000 k¥) total amount of grant
- lpha pprox 4.5 % resolution at 662 keV
- Wrap and package ourselves
 - comparison to commercial product from Scionix

Daresbury Laboratory

In-Beam Tests During NP2112-RIBF211 (June 2024)

HYPATIA_Edop_AB {zdbrho0&&zd100Cd}

2 x 2 HR-GAGG Crystals (25 x 25 x 75 mm ³)
4 x S13 (4x4) Hamamatsu SIPMs
In-house developed power supply
Temperature compensated

- Proton-rich nuclei around ¹⁰⁰Sn at 210 MeV/nucleon on 34 mm LH₂ target
 - Two 2×2 clusters of HR-GAGG, one 2×2 CeBr₃, one 1×2 CeBr₃
- Replacement of 4 DALI2⁺ crystals

Summary

DREB, Wiesbaden, June 24-28 2024 - 21

Summary

- Cannot compete with FRIB and GRETA+HRS for highest energy resolution in-beam γ spectroscopy with thin targets
 - But I don't think we have to
 - Focus on obtaining clean spectra
 - Excellent time resolution and superior P/T critical
- HYPATIA Project's construction proposal (NP2412-RIBF244) was rated "S" in last NP-PAC meeting
 - Anticipate to have array ready in 2031
 - Total costs are estimated to be around 7–9 Mio USD
- Partially funded
- First CeBr₃ and HR-GAGG prototype crystals delivered and tested
 - Time and energy resolution meet requirements
 - First in-beam tests performed

Thank You!

DREB, Wiesbaden, June 24-28 2024 - 23

Backup Slides

DREB, Wiesbaden, June 24–28 2024 – 24

*<i>\gamma***RIBF-UK: Scintillator-Based High-Resolution** γ **-Ray Spectrometer at RIBF**

- 72 CeBr3 crystals 18 quad modules
- Readout out with SiPMs strategically placed along the crystal to increase position sensitivity
- Electronics
- Simulation effort
- Mechanical design support for the whole array
- Funded with 850k £ (160,000)k¥) for equipment, 3000k \pounds (5,550,000 k \clubsuit) total amount of grant

Facilities Council

Daresbury Laboratory