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Basic elements of the SM-CI approach

A valence space, computationally tractable,
encompassing the targeted physics.
An effective interaction for the valence space, that
usually is expressed as a set of single particle
energies and two body matrix elements (TBME)
Shell Model codes to build and diagonalize the (huge
dimensional) matrices involved, or other,
approximated, mean field based methods (MCSM,
DNO-SM, etc) to solve the secular problem.
The present generation of SM codes includes, Antoine,
Nushell, and K-shell, among others.
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A game changer; the monopole multipole
decomposition

The effective hamiltonian can be decomposed in two parts
H = ℋm +ℋM . Monopole and Multipole.
ℋm determines the spherical mean field and its
evolution (aka shell evolution). It requires the explicit
inclusion of 3B forces to comply with experiment.
ℋM contains the terms responsible for the correlations
i.e. pairing, quadrupole, etc. This part is correctly
given by the realistic two body effective interactions.
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Quadrupole Collectivity: Elliott’s SU(3)

In 1958, using group theoretical methods, Elliott solved the
problem of a quadrupole-quadrupole interaction in a full
major Harmonic Oscillator (HO) shell.

H = H0 + 𝜒(Q(2) · Q(2))

He demonstrated that the most bound solution is the one
with maximum deformation. On top of the ground state a
perfect rotational band is built.

The problem of the description of the deformed nuclear
rotors in the laboratory frame was formally solved.
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Variants of Elliott’s SU(3)

As it was realized later, there are variants of SU(3) which
provide similar solutions. Pseudo-SU(3) applies when the
relevant valence space contains the orbits of a major HO
shell except the orbit with larger angular momentum (the
so called intruder orbit) and they are quasi-degenerated.
Quasi-SU(3), if the space comprises the intruder orbit and
its quadrupole partners with Δj = Δl = 2, 4, . . ..

Given that the quadrupole-quadrupole term is dominant in
the effective NN interaction, Elliott’s model and its variants,
Pseudo-SU3 and Quasi-SU3, provide the heuristic toolkit to
delineate the minimal valence spaces in which the
quadrupole collectivity (deformation) can develop.
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The nuclear landscape up to doubly magic 132Sn
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The Islands of Inversion (IoI) and SU(3)

It is now common knowledge that the IoI’s occur when
the neutron magic gaps in the very neutron rich
isotopes are quenched, provided the intruder
configurations maximize their correlation energy,
mostly of quadrupole type.
Indeed, for that to happen, the orbits close to the
Fermi level must pertain to some of the SU(3) variants
mentioned above.

Alfredo Poves Nuclear Shapes, Islands of Inversion, and all that . . .



The IoI’s at N/Z=20 and Nilsson-SU3
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N=20 to N=28. The Valence Space; sd-pf
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32Mg; Semi-Magic, Deformed and Super-deformed
configurations. B(E2)’s in e2fm4
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The remarkable structure of the three 0+’s of 32Mg

They are rather weird; the ground state is 9% 0p-0h,
54% 2p-2h, and 35% 4p-4h, thus, it is a mixture of
deformed and superdeformed prolate shapes and it
makes sense to speak of shape mixing.
However, the first excited 0+ (K. Wimmer’s state) has
33% 0p-0h, 12% 2p-2h, and 54% 4p-4h, a surprising
hybrid of semi-magic and superdeformed, whose
direct mixing matrix element is strictly zero. Clearly, it
is not a case of shape mixing, could it be an example
of shape entanglement?
Finally the second excited 0+ turns out to be an even
mixture of semi-magic, deformed and super-deformed.
Quite exotic as well ! More about 32Mg later on.
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To reproduce their excitation energies is a real
challenge to theory
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Shape Coexistence in 30Mg and 34Si
The Portal to the N=20 IoI
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Nuclear shape: Quadrupole Invariants

The only rigorous method to relate the intrinsic
parameters to laboratory-frame observables is
provided by the so-called quadrupole invariants Qn of
the second-rank quadrupole operator Q2 introduced
by Kumar.
The calculation of 𝛽 and 𝛾 requires the knowledge of
the expectation values of the second- and third-order
invariants defined, respectively, by Q̂2 = Q̂ · Q̂ and
Q̂3 = (Q̂ × Q̂) · Q̂ (where Q̂ × Q̂ is the coupling of Q̂
with itself to a second-rank operator).
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Fluctuations in 𝛽 and 𝛾

Indeed, it is not very meaningful to assign effective values
to 𝛽 and 𝛾 without also studying their fluctuations. Our aim
is to go beyond the extraction of effective values of these
intrinsic parameters and obtain their variances.

With this goal, we calculate:

𝜎(Q̂2) = (⟨Q̂4⟩ − ⟨Q̂2⟩2)1/2 (1)

and
𝜎(Q̂3) = (⟨Q̂6⟩ − ⟨Q̂3⟩2)1/2 . (2)

See A. Poves, F. Nowacki and Y. Alhassid, PRC 101, 054307
(2020), for the details on how to compute them exactly in a
shell model context.
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Fluctuations in 𝛽 and 𝛾

The intrinsic quadrupole moment Q0 and the effective
(average) values of the Bohr-Mottelson shape parameters
𝛽 and 𝛾 can be calculated from the expectation values of
the second- and third-order invariants using

Q0 =

√︂
16𝜋

5
⟨Q̂2⟩1/2 , (3)

𝛽 =
4𝜋
3r2

0

⟨Q̂2⟩1/2

A5/3 , (4)

with r0=1.2 fm, and

cos3𝛾 = −
√︂

7
2

⟨Q̂3⟩
⟨Q̂2⟩3/2

(5)
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Fluctuations in 𝛽 and 𝛾

Δ𝛽

𝛽
=

1
2
𝜎⟨Q̂2⟩
⟨Q̂2⟩

. (6)

𝜎2(cos3𝛾)
(cos3𝛾)2

=
𝜎2⟨Q̂3⟩
⟨Q̂3⟩2

+
9
4
𝜎2⟨Q̂2⟩
⟨Q̂2⟩2

− 3
⟨Q̂5⟩ − ⟨Q̂3⟩⟨Q̂2⟩

⟨Q̂3⟩⟨Q̂2⟩
. (7)

Notice that the covariance term in (7) requires the
knowledge of ⟨Q̂5⟩. The range of 𝛾 values at 1𝜎 is given by

cos−1(cos3𝛾 ± 𝜎(cos3𝛾)) (8)
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The meaning and limits of the nuclear shape

Do the intrinsic shape parameters 𝛽 and 𝛾 survive in
the laboratory frame?
𝛽: yes, although nuclei are most often 𝛽-soft
𝛾: rather not. The fluctuations in 𝛾 amount to 20∘- 30∘.
In some cases the oblate or prolate character survives.
In others, both sectors of the 𝛽-𝛾 sextant are equally
probable
𝛽 and 𝛾 only have small fluctuations when the nucleus
approaches the SU3 limit. In heavy, well deformed,
nuclei this is surely the case.
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Spherical nuclei in the laboratory frame?

It is a matter of how to define spherical, because, being
strict, one should demand 𝛽=0, ergo ⟨Q̂2⟩=0
And this only happens for HO closed shells,
Classical doubly magic nuclei do not comply with this
condition
56Ni 𝛽 = 0.21± 0.07 𝛾= 40.5∘ span 13∘ – 60∘

48Ca 𝛽 = 0.15± 0.05 𝛾= 33∘ span 0∘ – 60∘

With these huge fluctuations in 𝛽 and 𝛾, the concept of
shape is meaningless
Therefore, we are bound either to abandon or to
redefine the label ”spherical nuclei”

Alfredo Poves Nuclear Shapes, Islands of Inversion, and all that . . .



The K-plots are a representation in the

(𝛽, 𝛾) sextant of their average values

and of the locus of their variances at 1𝜎.
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32Mg under the Kumar lens;
the np-nh configurations

The 0p-0h (semi-magic) has 𝜎⟨Q̂2⟩
⟨Q̂2⟩

=0.48 and

𝛽=0.20±0.05, 𝜎⟨Q̂3⟩
⟨Q̂3⟩

=0.71, 𝛾=16∘ with a spread 0∘ – 24∘

at 1𝜎
The 2p-2h (normal deformed) has 𝜎⟨Q̂2⟩

⟨Q̂2⟩
=0.26 and

𝛽=0.48±0.06, 𝜎⟨Q̂3⟩
⟨Q̂3⟩

=0.86, 𝛾=20∘ with a spread 9∘ – 27∘

at 1𝜎
The 4p-4h (superdeformed) has 𝜎⟨Q̂2⟩

⟨Q̂2⟩
=0.21 and

𝛽=0.66±0.07, 𝜎⟨Q̂3⟩
⟨Q̂3⟩

=0.40 , 𝛾=15∘ with a spread 7∘ – 21∘

at 1𝜎
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K-plots for 32Mg; the np-nh configulations

 0p-0h              2p-2h              4p-4h

0

1

2

3

4

Ex
ci

ta
tio

n 
en

er
gy

 (M
eV

) 32Mg

2+
4+

16 

36 

4+

4+
0+

2+
2+

0+

0+

107

83 
121

168

0+
0p−0h

0+
2p−2h

0+
4p−4h

Alfredo Poves Nuclear Shapes, Islands of Inversion, and all that . . .



32Mg under the Kumar lens; the physical states

The ground state 0+
1 has 𝜎⟨Q̂2⟩

⟨Q̂2⟩
=0.62 and 𝛽=0.48±0.13,

𝜎⟨Q̂3⟩
⟨Q̂3⟩

=1.16, 𝛾=17∘ with a spread 0∘ – 27∘ at 1𝜎

The excited 0+
2 has 𝜎⟨Q̂2⟩

⟨Q̂2⟩
=0.88 and 𝛽=0.50±0.21,

𝜎⟨Q̂3⟩
⟨Q̂3⟩

=1.03, 𝛾=10∘ with a spread 0∘ – 21∘ at 1𝜎

The excited 0+
3 has 𝜎⟨Q̂2⟩

⟨Q̂2⟩
=0.77 and 𝛽=0.47±0.18,

𝜎⟨Q̂3⟩
⟨Q̂3⟩

=1.15, 𝛾=12∘ with a spread 0∘ – 23∘ at 1𝜎
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K-plots for 32Mg; the three lowest 0+ states
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Doubly magic 40Ca
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Superheavy 254No; D. Dao and F. Nowacki, DNO-SM
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Finale

Thanks for your attention !

Work done in collaboration with Y. Alhassid, E. Caurier,
S. M. Lenzi, F. Nowacki, K. Sieja and A. P. Zuker

More about these and other related topics in:
The neutron rich edge of the nuclear landscape,
F. Nowacki, A. Obertelli, and A. Poves
PPNP 120 (2021) 103866
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