Theory for Knockout Reactions

TECHNISCHE UNIVERSITÄT DARMSTADT

Stefan Typel

12th International Conference on Direct Reactions with Exotic BeamsDREB 2024Kurhaus WiesbadenJune 24 - 28, 2024

Introduction

TECHNISCHE UNIVERSITÄT DARMSTADT

experimental study of nuclear structure

- knockout reactions at 'high' energies
 - knockout of nucleons
 - \rightarrow single-particle structure, spectroscopic factors
 - knockout of pairs of nucleons
 - \rightarrow NN correlations, momentum distributions
 - knockout of clusters
 - \rightarrow many-body correlations, cluster degrees of freedom

Introduction

experimental study of nuclear structure

- knockout reactions at 'high' energies
 - knockout of nucleons
 - \rightarrow single-particle structure, spectroscopic factors
 - knockout of pairs of nucleons
 - \rightarrow NN correlations, momentum distributions
 - knockout of clusters
 - ightarrow many-body correlations, cluster degrees of freedom
 - beam energies of several 10 or 100 MeV per nucleon
 - direct and indirect kinematics
 - quasi-free scattering conditions
 - \rightarrow 'simple' theoretical description
 - \Rightarrow often used, versatile tool in nuclear physics

Introduction

experimental study of nuclear structure

- knockout reactions at 'high' energies
 - knockout of nucleons
 - \rightarrow single-particle structure, spectroscopic factors
 - knockout of pairs of nucleons
 - \rightarrow NN correlations, momentum distributions
 - knockout of clusters
 - ightarrow many-body correlations, cluster degrees of freedom
 - beam energies of several 10 or 100 MeV per nucleon
 - direct and indirect kinematics
 - quasi-free scattering conditions
 - \rightarrow 'simple' theoretical description
 - \Rightarrow often used, versatile tool in nuclear physics

Is everything OK with the theory? Not really ...

Knockout Reactions I

- different types of measurements
 - knockout of nucleon or cluster x from target T = c + x with proton beam and detection of p and x in final state

 $p + T \rightarrow p + x + c$

'direct' kinematics, exclusive cross section

example: α knockout ¹³²Sn(p,p α)¹²⁸Cd

Knockout Reactions I

different types of measurements

knockout of nucleon or cluster x from target T = c + x with proton beam and detection of p and x in final state

 $p + T \rightarrow p + x + c$

'direct' kinematics, exclusive cross section

example: α knockout ¹³²Sn(p,p α)¹²⁸Cd

• projectile P = c + x hitting a target T and detection of core c

 $P + T \rightarrow c + anything$

'inverse' kinematics, inclusive cross section

example: single-neutron knockout (removal) ¹²C(¹³²Sn, ¹³¹Sn ...) ...

Knockout Reactions I

- different types of measurements
 - knockout of nucleon or cluster x from target T = c + x with proton beam and detection of p and x in final state

 $p + T \rightarrow p + x + c$

'direct' kinematics, exclusive cross section

example: α knockout ¹³²Sn(p,p α)¹²⁸Cd

• projectile P = c + x hitting a target T and detection of core c

 $P + T \rightarrow c + anything$

'inverse' kinematics, inclusive cross section

example: single-neutron knockout (removal) ¹²C(¹³²Sn,¹³¹Sn...)...

theoretical description: theory of direct reactions

 $P + T \rightarrow c + anything$ with P = c + x

Knockout Reactions II

in the following: single-nucleon removal in inverse kinematics

 $P + T \rightarrow c + anything with P = c + x$

- two major contributions to cross section:
 - inelastic breakup = stripping σ_{str} : excitation of target
 - elastic breakup = diffraction dissociation \(\sigma_{dd}\): no excitation of target

usually $\sigma_{\rm str} \gg \sigma_{\rm dd}$

■ high-energy reactions: eikonal description ⇒ 'standard' formulas for cross sections

June 24, 2024 | DREB 2024 | Wiesbaden | Stefan Typel (TUDa, IKP) | 9

Knockout Reactions II

in the following: single-nucleon removal in inverse kinematics

 $P+T \rightarrow c + anything with P = c + x$

- two major contributions to cross section:
 - inelastic breakup = stripping σ_{str} : excitation of target
 - elastic breakup = diffraction dissociation \(\sigma_{dd}\): no excitation of target

usually $\sigma_{\rm str} \gg \sigma_{\rm dd}$

- high-energy reactions: eikonal description
 - \Rightarrow 'standard' formulas for cross sections
- main issues:
 - justification of cross section formulas, approximations
 - description of interactions (optical potentials, nucleon-nucleon collisions, ...)
 - higher-order processes (core destruction, ...)
 - nuclear structure input

UN DA

UNIVERSITÄT

- Standard' expressions (see, e.g., J.A. Tostevin, NPA 682 (2001) 320c)
 - cross section for stripping of single nucleon x

$$\sigma_{\text{str}} = \frac{1}{2j+1} \sum_{m} \int d^2 b_{xT} \left\langle \phi_{jm}^* \left| [1 - |S_{xT}(\vec{b}_{xT})|^2] |S_{cT}(\vec{b}_{cT})|^2 \right| \phi_{jm} \right\rangle$$

cross section for diffractive dissociation

$$\sigma_{\rm dd} = \frac{1}{2j+1} \sum_{m} \int d^2 b_{\rm xT} \left(\left\langle \phi_{jm} \left| \left| 1 - S_{\rm xT} S_{cT} \right|^2 \right| \phi_{jm} \right\rangle - \sum_{m'} \left| \left\langle \phi_{jm'} \left| 1 - S_{\rm xT} S_{cT} \right| \phi_{jm} \right\rangle \right|^2 \right)$$

Cross Sections I

- Standard' expressions (see, e.g., J.A. Tostevin, NPA 682 (2001) 320c)
 - cross section for stripping of single nucleon x

$$\sigma_{\text{str}} = \frac{1}{2j+1} \sum_{m} \int d^2 b_{xT} \left\langle \phi_{jm}^* \left| [1 - |S_{xT}(\vec{b}_{xT})|^2] |S_{cT}(\vec{b}_{cT})|^2 \right| \phi_{jm} \right\rangle$$

cross section for diffractive dissociation

$$\sigma_{\rm dd} = \frac{1}{2j+1} \sum_{m} \int d^2 b_{\rm XT} \, \left(\left\langle \phi_{jm} \left| \left| 1 - S_{\rm XT} S_{\rm cT} \right|^2 \right| \phi_{jm} \right\rangle - \sum_{m'} \left| \left\langle \phi_{jm'} \left| 1 - S_{\rm XT} S_{\rm cT} \right| \phi_{jm} \right\rangle \right|^2 \right)$$

with

- single-nucleon wave functions $\phi_{jm}(\vec{r})$
- eikonal 'S-matrices' $S_{ij}(\vec{b}_{ij}) = \exp(i\chi_{ij}) = \exp\left(-\frac{i}{\hbar v_{ij}}\int_{-\infty}^{\infty} dz \, U_{ij}(\vec{b}_{ij},z)\right)$
- optical potentials U_{ij}
- **a** radius $\vec{r} = (\vec{\rho}, z)$, impact parameter $b_{cT} = |\vec{\rho} \vec{b}_{xT}|$

- justification of expressions for cross section ⇒ reconsider derivation in formal theory of direct reactions (see, e.g., M.S. Hussein & K.W. McVoy, NPA 445 (1985) 124,...)
 - use of completeness relations, spectator approximation, ...
 - \rightarrow not discussed here

- justification of expressions for cross section ⇒ reconsider derivation in formal theory of direct reactions (see, e.g., M.S. Hussein & K.W. McVoy, NPA 445 (1985) 124,...)
 - $\hfill use of completeness relations, spectator approximation, <math display="inline">\ldots \rightarrow$ not discussed here
- description of interaction in eikonal phase factor χ_{ij}
 - parametrized/systematic nucleon-nucleus optical potentials (e.g., global Dirac potentials, E.D. Cooper et al., PRC 80 (2009) 034605)
 - single/double-folding potentials with effective interactions (M3Y, ...)
 - $\hfill \hfill \hfill$

$$U_{12}(E,\vec{r}) = \int d^3r' t_{NN} \rho_1(\vec{r}') \rho_2(\vec{r}-\vec{r}')$$

with NN scattering matrix element t_{NN} and densities ρ_1 , ρ_2 (parameterization?), Pauli correction for in-medium scattering?, isospin dependence?

differences to be explored

- parameterization of NN scattering amplitude
 - \Rightarrow often used form using optical theorem (E. Kujawski et al., PRL 21 (1968) 583, ...)

$$f_{NN} = rac{k}{4\pi} \sigma_{NN} (i+lpha) \exp(-eta q^2) \quad \Rightarrow \quad t_{NN} = -rac{2\pi\hbar^2}{\mu} f_{NN}$$

• total NN cross section σ_{NN}

- parameterization of NN scattering amplitude
 - \Rightarrow often used form using optical theorem (E. Kujawski et al., PRL 21 (1968) 583, ...)

$$f_{NN} = rac{k}{4\pi} \sigma_{NN} (i + \alpha) \exp(-\beta q^2) \quad \Rightarrow \quad t_{NN} = -rac{2\pi\hbar^2}{\mu} f_{NN}$$

■ total NN cross section σ_{NN} → different parameterizations (exp. data: R. L. Workman et al. (Particle Data Group), Prog. Theo. Exp. Phys. 2022, 083C01)

■ parameterization of NN scattering amplitude ⇒ often used form using optical theorem (E. Kujawski et al., PRL 21 (1968) 583, …)

$$f_{NN} = rac{k}{4\pi} \sigma_{NN} (i + lpha) \exp(-eta q^2) \quad \Rightarrow \quad t_{NN} = -rac{2\pi\hbar^2}{\mu} f_{NN}$$

- **u** total NN cross section $\sigma_{NN} \rightarrow$ different parameterizations
- $\hfill \hfill \hfill$
 - ightarrow sometimes inconsistent usage
 - \rightarrow identical angular dependence of real and imaginary parts
 - $\rightarrow \alpha$, β not independent,

relation of elastic and total cross sections

(see, e.g., W. Horiuchi et al., PRC 75 (2007) 044607)

■ parameterization of NN scattering amplitude ⇒ often used form using optical theorem (E. Kujawski et al., PRL 21 (1968) 583, ...)

$$f_{NN} = rac{k}{4\pi} \sigma_{NN} (i + \alpha) \exp(-\beta q^2) \quad \Rightarrow \quad t_{NN} = -rac{2\pi\hbar^2}{\mu} f_{NN}$$

- **u** total NN cross section $\sigma_{NN} \rightarrow$ different parameterizations
- **D** parameters α , β and momentum transfer \vec{q} for angular dependence

destruction of core c (= spectator) by interaction with particle x

- destruction of core c (= spectator) by interaction with particle x
 - modification of stripping cross section with additional factor (C.A. Bertulani, PLB 842 (2023) 138250)

$$\begin{split} \sigma_{\rm str}^{\rm mod} &= \frac{1}{2j+1} \sum_{m} \int d^2 b_{xT} \left\langle \phi_{jm}^* \left| [1 - |S_{xT}(\vec{b}_{xT})|^2] |S_{cT}(\vec{b}_{cT})|^2 \left(1 - \left\langle |S_{xc}|^2 \right\rangle \right) \right| \phi_{jm} \right\rangle \\ & \text{with} \qquad \left\langle |S_{xc}|^2 \right\rangle = \frac{1}{\sigma_{NN}^{el}} \int d\Omega \, \frac{d\sigma_{NN}^{el}(\theta)}{d\Omega} |S_{xc}(\vec{b}_{xc}(\theta,\phi))|^2 \end{split}$$

destruction of core c (= spectator) by interaction with particle x

modification of stripping cross section with additional factor

(C.A. Bertulani, PLB 842 (2023) 138250)

reaction	Ebeam [MeV/nucl.]	$S_p(S_n)$ [MeV]	$\sigma_{\rm str}$ [mb]	$\sigma_{ m str}^{ m mod}$ [mb]	% change
⁹ B(⁷ Li, ⁶ He)	80	9.98	20.49	19.01	-7.22
⁹ B(⁷ Li, ⁶ Li)	120	7.25	24.23	22.16	-8.54
¹² C(⁸ B, ⁷ Be)	285	0.137	42.49	39.02	-8.17
¹² C(⁹ C, ⁸ B)	78	1.3	40.14	36.86	-8.17
¹² C(⁹ Li, ⁸ Li)	100	4.06	40.32	37.00	-8.23
⁹ Be(¹⁰ Be, ⁹ Li)	80	19.64	35.33	32.47	-8.09
⁹ Be(¹⁰ Be, ⁹ Be)	120	6.812	77.62	70.68	-8.94
⁹ Be(¹⁰ C, ⁹ C)	120	21.28	44.57	40.50	-9.31
¹² C(¹² C, ¹¹ B)	250	15.95	64.68	58.70	-9.55
¹² C(¹² C, ¹¹ C)	250	18.72	74.16	67.10	-9.52
¹² C(¹⁴ O, ¹³ N)	305	1.531	37.45	33.99	-9.22
⁹ Be(¹⁴ 0, ¹³ 0)	53	3.234	25.57	23.32	-8.80
¹² C(¹⁶ O, ¹⁵ N)	2100	22.04	46.90	42.48	-9.42
¹² C(¹⁸ O, ¹⁵ O)	2100	22.04	44.46	40.26	-9.45

- destruction of core c (= spectator) by interaction with particle x
 - modification of stripping cross section with additional factor (C.A. Bertulani, PLB 842 (2023) 138250)

$$\begin{split} \sigma_{\text{str}} &= \frac{1}{2j+1} \sum_{m} \int d^2 b_{\text{xT}} \left\langle \phi_{jm}^* \left| [1 - |S_{\text{xT}}(\vec{b}_{\text{xT}})|^2] |S_{\text{cT}}(\vec{b}_{\text{cT}})|^2 \left(1 - \left\langle |S_{\text{xc}}|^2 \right\rangle \right) \right| \phi_{jm} \right\rangle \\ &\text{with} \qquad \left\langle |S_{\text{xc}}|^2 \right\rangle = \frac{1}{\sigma_{NN}^{ef}} \int d\Omega \, \frac{d\sigma_{NN}^{ef}(\theta)}{d\Omega} \left| S_{\text{xc}}(\vec{b}_{\text{xc}}(\theta, \phi)) \right|^2 \end{split}$$

- \Rightarrow small effect
 - reduction of cross section by 7 10%
 - no obvious dependence on nucleon separation energy

- destruction of core c (= spectator) by interaction with particle x
 - modification of stripping cross section with additional factor (C.A. Bertulani, PLB 842 (2023) 138250)

$$\begin{split} \sigma_{\text{str}} &= \frac{1}{2j+1} \sum_{m} \int d^2 b_{\text{xT}} \left\langle \phi_{jm}^* \left| [1 - |S_{\text{xT}}(\vec{b}_{\text{xT}})|^2] |S_{\text{cT}}(\vec{b}_{\text{cT}})|^2 \left(1 - \left\langle |S_{\text{xc}}|^2 \right\rangle \right) \right| \phi_{jm} \right\rangle \\ &\text{with} \qquad \left\langle |S_{\text{xc}}|^2 \right\rangle = \frac{1}{\sigma_{NN}^{ef}} \int d\Omega \, \frac{d\sigma_{NN}^{ef}(\theta)}{d\Omega} |S_{\text{xc}}(\vec{b}_{\text{xc}}(\theta, \phi))|^2 \end{split}$$

- \Rightarrow small effect
 - reduction of cross section by 7 10%
 - no obvious dependence on nucleon separation energy
- modified derivation of cross section with non-local effective densities
 - (M. Gómez-Ramos, J. Gómez-Camacho, A.M. Moro, PLB 847 (2023) 138284)
 - reduction of cross section by 10 50%
 - strong dependence on binding energy/isospin

Nuclear Structure

input in cross section calculations

- density distributions
- single-particle wave functions ϕ_{jm}

Nuclear Structure

input in cross section calculations

- density distributions
- single-particle wave functions ϕ_{jm}
- different sources
 - simple parametrizations of neutron/proton densities in nuclei
 - wave functions from solution of single-particle Schrödiger equation with parametrized, simple (e.g. Woods-Saxon) potentials ⇒ only selected nucleon states

Nuclear Structure

input in cross section calculations

- density distributions
- single-particle wave functions ϕ_{jm}
- different sources
 - simple parametrizations of neutron/proton densities in nuclei
 - wave functions from solution of single-particle Schrödiger equation with parametrized, simple (e.g. Woods-Saxon) potentials ⇒ only selected nucleon states
 - input from ab-initio calculations ?
 - wave functions, density distributions from energy density functionals (EDF)
 - development of new relativistic EDF (in collaboration with S. Shlomo, Texas A&M University, paper in preparation)
 - \Rightarrow improved description of nuclei

Theoretical Description of Knockout Reactions

TECHNISCHE UNIVERSITÄT DARMSTADT

- development of new computer program
 - calculation of 'standard' knockout cross sections
 - optical potentials/interaction of different origin
 - consistent nuclear structure input from relativistic EDF, ...

Theoretical Description of Knockout Reactions

TECHNISCHE UNIVERSITÄT DARMSTADT

- development of new computer program
 - calculation of 'standard' knockout cross sections
 - optical potentials/interaction of different origin
 - consistent nuclear structure input from relativistic EDF, ...
 - Monte-Carlo simulation of reaction
 - motion of particles along classical trajectories (different forms)
 - reactions along trajectory
 - multi-step processes possible
 - phase-space distributions of nucleons (⇒ use of Wigner transform?) in nucleon-nucleon scattering (parameterization?)
 - event distributions with momenta of all particles in final state

Theoretical Description of Knockout Reactions

TECHNISCHE UNIVERSITÄT DARMSTADT

- development of new computer program
 - calculation of 'standard' knockout cross sections
 - optical potentials/interaction of different origin
 - consistent nuclear structure input from relativistic EDF, ...
 - Monte-Carlo simulation of reaction
 - motion of particles along classical trajectories (different forms)
 - reactions along trajectory
 - multi-step processes possible
 - phase-space distributions of nucleons (⇒ use of Wigner transform?) in nucleon-nucleon scattering (parameterization?)
 - event distributions with momenta of all particles in final state
 - similar to CDXS+ code for Coulomb dissociation
 - work in progress

Thank You for Your Attention!

Helmholtz Forschungsakademie Hessen für FAIR

June 24, 2024 | DREB 2024 | Wiesbaden | Stefan Typel (TUDa, IKP) | 30