Miteinander forschen Wirtschaft stärken Perspektiven schaffen

Energy recuperating 4-quadrant power supply for inductive loads

Superconductivity for Sustainable Energy Systems and Particle Accelerators GSI Darmstadt, 18th – 20th October 2023

U. Zerweck, N. Gust, A. Wesenbeck, F. Donat, T. Jande, S. Rackow, S. Richter, A. Kade

10

25

25

10

10

- Current Voltage

M

15

15 Time [s] 20

20

Test of superconducting magnets

Motivation

- Available: Laboratory grid supply: 400 V 3~ 130 A 90 kW Helium infrastructure + rest: 400 V 3~ 100 A 70 kW High current power supply: 400 V 3~ 30 A 21 kW

- Needed:

High current power needed: 25 V 1- 14 kA 350 kW

SIS300 dipole magnet: L = 11.4 mH $I_{max} = 8926 A$

- Test of superconducting magnets

Available:
Laboratory grid supply:
400 V 3~ 130 A 90 kW
Helium infrastructure + rest:
400 V 3~ 100 A 70 kW
High current power supply:
400 V 3~ 30 A 21 kW

- Needed:

High current power needed: 25 V 1- 14 kA 350 kW

Motivation

SIS300 dipole magnet: L = 11.4mH $I_{max} = 8926 A$ U = 22 V

How To: drive an inductive load recuperate inductive energy store recuperated energy store MJ safely, control kA with mV sensitivity

Test results of capacitor bank, 4-quadrant converter and quench protection

Test with GSI SIS300 magnet (9 kA, 0.5 MJ)

- voltage = torque, current = speed, inductance = moment of inertia

switch

U

- apply dc voltage on inductance via switch
- current rises linearly
- massive arcing when opening switch

- voltage = torque, current = speed, inductance = moment of inertia
- replace switch by MOSFETS
- highside increases current

- voltage = torque, current = speed, inductance = moment of inertia
- replace switch by MOSFETS
- highside increases current
- lowside keeps current rolling

Current through an inductor

– voltage = torque, current = speed, inductance = moment of inertia

Udc

- replace switch by MOSFETS
- highside increases current
- lowside keeps current rolling
- recuperation into power supply

8

Current through an inductor

- voltage = torque, current = speed, inductance = moment of inertia

Udc

لی

С

NMOS

NMOS

- replace switch by MOSFETS
- highside increases current
- lowside keeps current rolling
- recuperation into power supply capacitor

Current through an inductor

- voltage = torque, current = speed, inductance = moment of inertia
- replace switch by MOSFETS
- highside increases current
- lowside keeps current rolling
- recuperation into power supply capacitor

- voltage = torque, current = speed, inductance = moment of inertia
- replace switch by MOSFETS
- highside increases current
- lowside keeps current rolling
- recuperation into power supply capacitor

- voltage = torque, current = speed, inductance = moment of inertia
- replace switch by MOSFETS
- highside increases current
- lowside keeps current rolling
- recuperation into power supply capacitor

- E_L =1/2 L I² = 500 kJ → E_C =1/2 C U² = 5 MJ - 2.7 V Supercapacitors - 10x → 27 V_{max} → 10x 3x in one rack insert → 15,3 kF in 17 inserts

- voltage = torque, current = speed, inductance = moment of inertia
- replace switch by MOSFETS
- highside increases current
- lowside keeps current rolling
- recuperation into power supply capacitor
- $E_L = 1/2 L I^2 = 500 kJ$ → $E_C = 1/2 C U^2 = 5 MJ$
- -27 V Supercapacitors
- 2.7 V Supercapacitors
- − 10x \rightarrow 27 V_{max}
- \rightarrow 10x 3x in one rack insert
- \rightarrow 15,3 kF in 17 inserts

- security:
 active MOSFETS
 passive fuses
 short cirquit proof
- ILK temperature sensor multiplexer: each capacitor monitored individually (µC)

Balance of capacitor cells during operation

- voltage = torque, current = speed, inductance = moment of inertia
- replace switch by MOSFETS
- highside increases current
- lowside keeps current rolling
- recuperation into power supply capacitor

 $- E_L = 1/2 L I^2 = 500 kJ$

- $\rightarrow E_{C}=1/2 \text{ C } \text{U}^{2}=5 \text{ MJ}$
- 2.7 V Supercapacitors
- − 10x \rightarrow 27 V_{max}
- \rightarrow 10x 3x in one rack insert
- \rightarrow 15,3 kF in 17 inserts

- security:
 active MOSFETS
 passive fuses
 short cirquit proof
- ILK temperature sensor multiplexer: each capacitor monitored individually (µC)

- **variable** output voltage required 27V
- \rightarrow pulse width modulation of output 0% .. 100%
- steep transients with high harmonics $\leftarrow \rightarrow$ quench detection !
- filtering required, as close as possible
- 30 V 50 A per board

- variable output voltage required 27V
- \rightarrow pulse width modulation of output 0% .. 100%
- steep transients with high harmonics $\leftarrow \rightarrow$ quench detection !
- filtering required, as close as possible
- 30 V $\,$ 50 A $\,$ per board $\,$

- variable output voltage required 27V
- \rightarrow pulse width modulation of output 0% .. 100%
- steep transients with high harmonics $\leftarrow \rightarrow$ quench detection !
- filtering required, as close as possible
- 30 V 50 A per board

High-current voltage supply

- variable output voltage required 27V
- \rightarrow pulse width modulation of output 0% .. 100%
- steep transients with high harmonics $\leftarrow \rightarrow$ quench detection !
- filtering required, as close as possible
- 30 V 50 A per board
- 20 boards per rack insert
- 20x output current regulation in parallel
- 1x setpoint distribution and data communication board

18

- variable output voltage required 27V
- \rightarrow pulse width modulation of output 0% .. 100%
- steep transients with high harmonics $\leftarrow \rightarrow$ quench detection !
- filtering required, as close as possible
- 30 V 50 A per board
- 20 boards per rack insert
- 14 rack inserts
- 280 4-qadrant musketeers one (master) for all, all for one (magnet)

- filtered output: < 1 mV ripple, theoretically
- measured: 20/100 mV ripple. Culprit: grid power supply
- no noise from 4-quadrant converter measurable
- filtered detection: bipolar, <1 ms, >2 mV adjustable

4Q converter off

- filtered output: < 1 mV ripple, theoretically
- measured: 20/100 mV ripple. Culprit: grid power supply
- no noise from 4-quadrant converter measurable
- filtered detection: bipolar, <1 ms, >2 mV adjustable
- switch: 30x 500 A, t_{open} = 2 ms
- IGBT: delayed, t_{off} = 50 ns
- total: 5 ms
- peak quench power 12.6 MW
- 90% de-energized in 200 ms

- filtered output: < 1 mV ripple, theoretically
- measured: 20/100 mV ripple. Culprit: grid power supply
- no noise from 4-quadrant converter measurable
- filtered detection: bipolar, <1 ms, >2 mV adjustable
- switch: 30x 500 A, t_{open} = 2 ms
- IGBT: delayed, t_{off} = 50 ns
- total: 5 ms
- peak quench power 12.6 MW
- 90% de-energized in 200 ms

SIS 300 magnet at ILK Dresden for testing:

- ramping with different rates and regimes (start and hold current, timing)
- determination of quench characteristics

inductance	11 mH
current	3 9 kA
magnetic field	1.5 4.5 T
ramp-rate up to	2 kA/s
ramp-voltage up t	o 22 V

magnetic energy up to 500 kJ

Test results from INFN-LASA, Milano, 2012

- 9 kA reached
- quenches if: too much ∆I in combination with too much dI/dt
- 50 mV coil difference voltage pulse
 60 ... 100 ms before quench
- pulse missing during training quench
- theory: sc loop current in coil head
- current loop compensates flux locally until quench
- flux redistribution in coil \rightarrow voltage pulse

Measurement #1

O A → 3191 A @ 1900 A/s triggered @ -20 mV with -0.12 V/s peak ramping power 64 kW

-200 0 2 1

18. - 20.10.2023

Superconductivity for Sustainable Energy Systems and Particle Accelerators Days, GSI, Darmstadt

Test with GSI SIS300 magnet

Measurement #5

3540 A → 3100 A @ -1,6 kA/s triggered @ +30 mV with +0,09 V/s peak ramping power -50 kW

27

 $0 \text{ A} \rightarrow 6310 \text{ A} @ +0,20 \text{ kA/s}$

triggered at +40 mV with +0,67 V/s

peak ramping power 23 kW, quench 2.8 MW

Measurement #21

Test with GSI SIS300 magnet

Superconductivity for Sustainable Energy Systems and Particle Accelerators Days, GSI, Darmstadt 28

UD in mV

60

time in s

Test with GSI SIS300 magnet

Measurement #18

- +4.3 kA → 2 kA @ -1,7 kA/s no trigger at 20 mV threshold
- quench expected at +0,1 kA
- peak ramping power -84 kW

Two modes of quenches are observed:

- Magnet quenches in upper coil if ramped fast (no. 1-5, 7-13, 15, 19, 20), differential voltage is inverted from ramp rate
- Magnet quenches in lower coil if ramped slow (no. 6, 10, 14, 16, 21)
- Results need more clarification

	Initial	Quench	Ramprate	
Quench	current in A	current in A	in A/s	UD in mV
1	0	3191	1905	-20
2	0	3180	1515	-30
3	0	3350	1666	-30
4	0	3320	1894	-30
5	3540	3100	-1583	28
6	0	3080	333	40
7	0	4870	375	-92
8	0	4020	715	-100
9	0	3660	1430	-83
10	0	3660	1500	-70
11	0	3695	1765	-78
12	0	3920	820	-100
13	0	4190	577	-100
14	0	5810	333	100
15	0	4800	416	-91
16	0	5610	285	100
17	0	4520	100	73
18	0	4400	100	-20
19	0	3380	1953	-30
20	-500	3530	1765	-40
21	0	6320	200	40

Conclusion

- The recuperative 4 quadrant supply system works
- Ramping of magnets: -23 V ... +23 V; -14 kA ... +14 kA
- High efficiency 97 % (capacitors + converter); total 94 ... 90 % (+ thin copper hoses)
- Grid power: only ~10 % (e.g. 20 kW / 220 kW)
- Noise of converter: <10 mV; grid power supply</p>
- Current regulation works, was improved in the meantime
- High compactness (3 cabinets 19")
- Adjustable fast quench protection system (reaction time < 5 ms)</p>

Miteinander forschen Wirtschaft stärken Perspektiven schaffen

Thank you for your attention!

Questions???

Dr. Ulrich Zerweck

Institut für Luft- und Kältetechnik gGmbH, Dresden Hauptbereich Kryotechnik und Tieftemperaturphysik ulrich.zerweck@ilkdresden.de

References

[1] https://www.fotocommunity.de/photo/schwungrad-maexken/44108211