T. Winkler / K. Sugita on behalf of I.FAST WP 8.6

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Design Parameters for a round, high current, low ac loss HTS ReBCO cable Application: fast ramped, high field accelerator magnets

Members:

- Institute of Electrical Engineering (IEE), Slovak Academy of Sciences, Slovakia
- ILK Dresden, Germany
- GSI, Germany
- EMS Chair, University of Twente (UT), Netherlands

LTS (NbTi) experiences from FAIR SIS100

FAIR GmbH | GSI GmbH

FAIR E

Dry and wet cable technology

- Dry (SIS100 dipole magnet): polyimide tape insulation
- Wet (JINR magnets): liquid epoxy with glass fibre tape insulation
 - pro: good thermal contact / con: short storage time due to degradation of wet-epoxy
- insulated wires, connected in series after coil winding and yoke installation (terminal box) low current operation
- one of strand is used for quench detection (Mutual Inductance Detector)

Material		High current magnet	Low current magnet
e		CuNi, inner \$ 4.71 , outer \$ 5.71	CuNi, inner
lation around the tube		no	Polyimide tape
icting strand	bare strand diameter	0.8 mm	0.5 mm
	insulation around the strand	-	0,05
	number of strands	23	28
	Transposition pitch	50 mm	50 mm
e	material	NiCr 8020/ 2.4869	Synthetic
	diameter (mm)	0,25	0,2
ition (inside)	material	Polyimide tape	Polyimide tape
ition (outside)	material	Glass fibre	Polyimide tape
eter		8.3 mm	7.2 mm
urrent		13.2 kA	250 A (strand) / 6.75 kA (ca
p-rate		28 kA/sec.	1250 A/sec. (strand) / 33.75 kA/s

LTS (NbTi) experiences from FAIR SIS100

Coil

• Embedded in the G11 support structure

rigid mechanical structure

Magnet

• Superferric type

- main dipole magnet
- quadrupole magnet
- chromaticity sextupole magnet
- Cosine-theta type
 - horizontal / vertical combined steering magnet
 - quadrupole / sextupole / octupole nested multipole corrector magnet

Application SISX00

- Future synchrotron
- cos-θ-Design (dipole)
- Mag. Field in Aperture: 1.9 T 6.5 T
- Mag field ramp rate: 0.5 T/s 1 T/s
- Magnet length: 7.76 m
- Aperture diameter: 85 mm
- Operating temperature: 4.2 K
- Coil requirements: 450 kA*turn per pole

- Cable Considerations:
- Sustained force: 2 kN/m
- Cable diameter: ~10 mm
- Operating current : up to 30 kA (?)
- Min bending radius: ~20 mm
- Cooling channel diameter: tbd
- Length:
- 200 m 300 m (per pole)
- 400 m 600 m (per magnet)
- All open for discussion

Cable Layout

- Starting point:
- SIS100 cable (GSI/JINR) (LTS)
- CORC/CORT type cable (ACT/IEE) (HTS)
- Idea: use good direct cooling properties, and windability of SIS100 cable and apply it to HTS

Advanced Conductor Technology

Unfilled area (air) oppe Substrate Superconducting Cooling chanel layer **HTS** tape Pipe

AC loss - winding direction theory

Theoretical modelling shows little difference between different winding directions for consecutive layers.

B_{cc} (80 mT, 50 Hz) Transposition= 22 mm

10⁻²

10-

$$\vec{J} = J_{c0} tanh\left(\frac{|E|}{E_0}\right) \left(\frac{E_x}{|E|}\hat{i} + \frac{E_y}{|E|}\hat{j} + \frac{E_z}{|E|}\right)$$

Amplitude of applied magnetic field, $\mu_0 H$ [T]

Solovyov, M. and Gömöry, F. Supercond. Sci Technol. 32 (2019) 115001

AC loss - Magnetisation loss theory

assumptions: tapes are in magnetic field higher than the penetration field, e.g. saturation of screening currents

In an alternative from LTS strands, with diameter d_f :

Assuming w = 3mm and $d_f = 3 \mu$ m:

 $Q_{h,CORT} = B_{max} N I_c \frac{1}{\pi cos\alpha} W$

$$Q_{h,LTS} = B_{max} N I_c \frac{8}{3\pi} d_f$$

$$\frac{Q_{h,CORT}}{Q_{h,LTS}} = \frac{3}{8\cos\alpha} \frac{w}{d_f} \approx \frac{w}{2d_f} = 500$$

AC loss - Magnetisation loss at 77 K

3 samples: 2 x 5 tapes

Opposite layers

Coinciding layers

Stacked tapes

Measurements at 77 K @ IEE

AC loss - Magnetisation loss at 4 K

Measurements at 4 K @ UT Deviation due to higher I_c compared to 77 K

AC loss - Coupling loss

Coupling loss depends on electrical contacts between tapes

Modeling and cross sections show that tape contacts are very limited.

FAIR GmbH | GSI GmbH

no frequency dependence => no coupling currents

Mechanics - Sample Manufacturing

Mechanics - Tape Bending

Compessive bending 5 mm, 45 deg

Tensile bending 5 mm, 45 deg

2.12:53 PPI 10.00 KV 1.378 X 8.6 mm 0 ° 4.0 0 °

*82 3/8/2022 HV map □ WD Sit spet set 2:48:18 PM 20.00 kV 599 x 8.5 mm 0 ° 4.5 0 °

Mechanics - Tape Bending

٠

-

-

Conclusions

Planed

I_c measurement vs. former diameter considering compressive bending

former diameters

Mechanics - Tape Bending

FAIR GmbH | GSI GmbH

We find approximate centre of stiffness of the tape (the layers are not symmetrical)

$$= \left[h_{Hastelloy} - \left(\frac{E_{REBCO}}{E_{Hastelloy}} \times h_{REBCO} \right) - \left(\frac{E_{Buffer}}{E_{Hastelloy}} \times h_{buffer} \right) \right] / 2$$
$$h_{NA} = h_{Copper} + h_{Silver} + h_{REBCO} + h_{buffer} + h_{shift}$$

And from the geometry we can find the resulting strain in SC layer

$$\varepsilon_{compressive} = \frac{-(h_{REBCO} + h_{Buffer} + h_{shift})}{R + h_{NA}}$$

0		
0	– -THEVA 4301-47TK 60	• THEVA 4301-48TK 45
5	••••• THEVA 4301-53TK 45	

Measurements at 77 K @ IEE

Cooling - Tape to Tape

Experimental setup for investigation of the heat conduction of HTS materials

Cooling

- Increasing cycle duration to help deal with high AC loss
- Use thermal heat capacity as buffer during ramp
- During plateau cable/magnet can cool down again
- For SIS300 cycle the loss is in the order of 390 J/cycle/m

- In case of a stretched cycle:
 - Ramp duration from 1s
 - to 10 sec

Thank you very much for your attention Questions?

