
Neural Network Based Approach
for Optimization

of Λ Signal/Background Ratio
in the CBM Experiment at FAIR

Gianna Zischka
Institute of Computer Science

Johann Wolfgang Goethe-University
Frankfurt am Main, Germany

supervised by
Prof. Dr. Ivan Kisel

September 21, 2023

Bitte dieses Formular zusammen mit der Abschlussarbeit abgeben!

Erklärung zur Abschlussarbeit

gemäß § 25, Abs. 11 der Ordnung für den Bachelorstudiengang Informatik

vom 06. Dezember 2010:

Hiermit erkläre ich

(Nachname, Vorname)

Die vorliegende Arbeit habe ich selbstständig und ohne Benutzung anderer als

der angegebenen Quellen und Hilfsmittel verfasst.

Zudem versichere ich, dass alle eingereichten schriftlichen gebundenen

Versionen meiner vorliegenden Bachelorarbeit mit der digital eingereichten

elektronischen Version meiner Bachelorarbeit übereinstimmen.

Frankfurt am Main, den

 __

 Unterschrift der/des Studierenden

Abstract

In the field of heavy-ion physics, particle accelerators are used to examine differ-
ent physical models. In collider experiments as well as fixed-target experiments, the
colliding ions result in a burst of particles that can be measured through a detector
setup. The measurements help physicists to understand the different states of matter.

The future Facility for Antiproton and Ion Research (FAIR) will provide scientists
the ability to study the states of nuclear matter under extremely dense conditions. One
of the experiments at the facility is the heavy-ion experiment Compressed Baryonic
Matter (CBM). Since there is no simple criteria to find events of interest and CBM
requires a collision rate of up to 10 MHz, a full event reconstruction is required to be
performed online.

The First Level Event Selection package, including the Kalman Filter Particle
Finder, is used to reconstruct the events with their particles. Some particles have
such a short lifetime, that they decay almost immediately after the collision. The
reconstruction of these particles is of high interest for physicists. The KF Particle
Finder is used to find and reconstruct these particles.

Decaying particles are referred to as mother particles, whereas their decay prod-
ucts are referred to as daughter particles. One of these decaying particles is Λ, which
will be investigated within this work. In the reconstruction process, when a decay is
recognized, all possible mother particles are created, such that no signal of particles
will be accidentally rejected, if the particle hypothesis is wrong. This approach
creates noise, so called background.

In the present thesis, a neural network based approach is studied to improve
the signal/background ratio, and thus, to reject the background produced by falsely
reconstructed particles, without rejecting too many signal particles.

The presented approach, with a neural network implemented using the ANN4FLES
package, has an accuracy of almost 99% on the validation set. This neural network is
compared with the default approach of the KF Particle Finder and it is shown that
the signal/background ratio was improved significantly by a factor of 10.97.

Zusammenfassung

In dem Forschungsgebiet der Schwerionenphysik werden Teilchenbeschleuniger ver-
wendet, um verschiedene physikalische Modelle zu untersuchen. In Collider- sowie
in Fixed-Target-Experimenten führen die kollidierenden Ionen zu einer Explosion
von Teilchen, die durch Detektoren gemessen werden können. Die Messungen helfen
Physikern, die verschiedenen Zustände der Materie zu untersuchen.

Die zukünftige Einrichtung Facility of Antiproton and Ion Research (FAIR) wird
Wissenschaftlern die Möglichkeit bieten, die Zustände von Kernmaterie unter ex-
tremen Dichte-Bedingungen zu erforschen. Eines der Experimente der Einrichtung
ist das Compressed Baryonic Matter Experiment (CBM). Da es keine einfachen
Kriterien zur Identifizierung interessanter Kollisionen in dem CBM Experiment gibt
und eine Kollisionsrate von bis zu 10 MHz erfordert wird, muss eine vollständige
Rekonstruktion der Kollisionen online durchgeführt werden.

Das First Level Event Selection Paket, einschließlich des Kalman-Filter Particle
Finders, wird verwendet, um die Kollisionen mitsamt ihren Teilchen zu rekonstru-
ieren. Einige Teilchen haben eine so kurze Lebensdauer, dass sie fast unmittelbar
nach der Kollision zerfallen. Die Rekonstruktion dieser Teilchen ist für Physiker
von hohem Interesse. Der KF Particle Finder wird verwendet, um diese Teilchen zu
finden und zu rekonstruieren.

Zerfallende Teilchen werden als Mutterteilchen bezeichnet, während ihre Zerfall-
sprodukte als Tochterteilchen bezeichnet werden. Eines dieser zerfallenden Teilchen
ist Λ, das in der vorliegenden Arbeit untersucht wird. Im Rekonstruktionsprozess
werden, sobald ein Zerfall erkannt wird, alle möglichen Mutterteilchen erzeugt. Dies
ist nötig, damit kein Teilchensignal versehentlich abgelehnt wird, falls die Teilchen-
hypothese falsch ist. Dadurch erzeugt dieser Ansatz so genannten Background, bei
dem es sich um falsch rekonstruierte Teilchen handelt.

In der vorliegenden Arbeit wird ein auf neuronalen Netzen basierender Ansatz
untersucht, um das Signal/Background-Verhältnis zu verbessern und somit den durch
falsch rekonstruierte Teilchen erzeugten Background zu unterdrücken. Dabei ist zu
beachten, nicht zu viele korrekt rekonstruierte Parikel zu verwerfen.

Der vorgestellte Ansatz, der mit dem ANN4FLES-Paket implementiert wurde, hat
mit dem Validierungsdatensatz eine Klassifizierungsgenauigkeit von fast 99%. Dieses
neuronale Netz wird mit dem Standardansatz des KF Particle Finders verglichen, und
es wird gezeigt, dass das Signal/Background-Verhältnis mit einem Faktor von 10,97
deutlich verbessert werden konnte.

Contents

1 Introduction 1

2 Compressed Baryonic Matter Experiment at FAIR 3
2.1 The CBM Detector Setup . 5
2.2 Basic Knowledge of Quarks . 6
2.3 CBM Research Area . 8

3 Kalman Filter Particle Finder Package 11
3.1 Functionality of Kalman Filter Particle Finder (KF Particle Finder)

Package . 13
3.2 Structure of the Package . 15

4 Artificial Neural Networks 17
4.1 The Perceptron by Rosenblatt . 17
4.2 Multilayer Perceptron . 19
4.3 Forward Propagation . 20
4.4 Neural Network Training Paradigms and Key Terminologies 22
4.5 Training by Supervised Learning 23

4.5.1 Cross-Entropy . 24
4.5.2 Backpropagation . 25
4.5.3 Optimization Algorithm 28

5 Optimization of Λ Signal/Background Ratio 31
5.1 Adjusting Specific Cuts for the Network Approach 31
5.2 Extraction of the Training Data . 33
5.3 Neural Network Model . 39
5.4 Implementation of ANN4FLES in the KF Particle Finder Package . 42
5.5 Results . 43

6 Conclusion 49

References 59

Introduction

Chapter 1

Introduction

Relativistic heavy-ion experiments represent a large research area in particle physics.
This research area concentrates on the effects of collisions of two heavy ions with
high temperature and density. This research aims to investigate the basic proper-
ties of matter. One of the primary objectives is to gain a deeper comprehension of
the Quantum Chromo Dynamics (QCD). Additionally, another focal point is the
exploration of the Quark-Gluon Plasma (QGP), which was first discovered at the
Relativistic Heavy Ion Collider [1]. QGP is one of the objectives to be explored in the
Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton
and Ion Research (FAIR), build in Darmstadt, Germany.

Figure 1.1: Illustration of the different states of a relativistic heavy-ion collision. [2]

In the process of the collision of two heavy ions with high temperature, particles
are projected towards one another at relativistic speeds in order to examine their
behavior in extreme conditions, such as high temperature or high density. These ex-
periments can be separated in two fields, the collider experiments and the fixed target
experiments. The former are two heavy-ion beams, which collide with each other.

1

Introduction

In a fixed target experiment, heavy-ions are accelerated and fired against a fixed target.

When two heavy ions collide, an interaction region is formed in the collision over-
lap zone. This is visualized in Figure 1.1. In this region, nuclei from each ion interact
with each other. If a large portion of the nuclei from both ions interact, it is called a
central collision. If the nuclei just graze each other, it is termed a peripheral colli-
sion [3]. Nuclei that do not participate in the interaction are called spectators [4, p.22].

In the collision overlap zone, primary collision area are formed. This is followed
by a pre-equilibrium phase of QGP, which is typically short-lived compared to the
overall space-time evolution of the collision (event). After approximately 1 fm/c, if
the energy-density is high enough, it is possible that the QGP is created. Within this,
the normally bounded quarks and gluons can move freely. After this QGP phase, the
energy-density is not high enough anymore and the quarks and gluons combine to
form hadrons, which is also shown in Figure 1.1. Within the hadron gas phase, the
energy-density continues to decrease and a chemical freeze-out occurs. This is the
ending of inelastic collisions, where the particles are colliding and are still chemically
changing. At around 10 fm/c the kinetic freeze-out also occurs, then even the elastic
collisions end, which means, that there will be no more interactions between particles
and the hadrons escape freely. [5] [6, p. 18,19]

For the investigation of QGP, the created particles of the collision have to be
studied. Strangeness is expected to be an indicator for deconfined matter, like QGP
[7]. The short-lived particle Λ consists of one up-, one down- and one strange-quark
and therefore, Λ might be considered as an indicator for deconfined matter. Short-
lived particles are particles, which have a short lifetime. Λ, for example, has a mean
lifetime of (2.632± 0.020)× 10−10s [8]. These particles often decay quickly due to
their instability. They are part of the most interesting physics, especially including
those with a very small production probability [9]. As they can not be detected by
the detectors, they have to be reconstructed by their decay products. For this purpose
the KF Particle Finder package is used.

In this thesis, the signal/background ratio of Λ has to be optimized for the
Compressed Baryonic Matter (CBM) experiment by using a neural network. The
signal/background ratio indicates the ratio of correctly reconstructed Λ particles to
those which are incorrectly reconstructed or classified. The neural network used in
this thesis is a deep multilayer perceptron implemented by using the Artificial Neural
Networks for First Level Event Selection (ANN4FLES) package. This network is
integrated in the KF Particle Finder package after training using its trained weights.

2

Compressed Baryonic Matter Experiment at FAIR

Chapter 2

Compressed Baryonic Matter
Experiment at FAIR

The Compressed Baryonic Matter (CBM) experiment [10] is part of the future Facility
for Antiproton and Ion Research (FAIR) [11], build in Darmstadt, Germany and
will be one of four major research pillars of FAIR. The other ones are Nuclear
Structure, Astrophysics and Reactions (NUSTAR) [12], Antiproton Anihilation at
Darmstadt (PANDA) [13] and Atomic, Plasma Physics and Applications (APPA) [14].

Figure 2.1: Layout of the Facility for Antiproton and Ion Research (FAIR) [15]. The blue
marked parts represent existing facilities of the Gesellschaft für Schwerionenforschung (GSI).
The red marked parts represent the planned facilities of FAIR.

FAIR (Figure 2.1) will extend the current existing accelerator facility of the GSI
Helmholtz Centre for Heavy Ion Research in Darmstadt. The unique feature of FAIR
is that it will be able to deliver particle beams of all chemical elements (or ions),

3

Compressed Baryonic Matter Experiment at FAIR

as well as antiprotons [16]. Currently FAIR is still under construction and CBM is
expected to be ready for launch in 2028 [16]. FAIR will consist of the synchrotron
SIS100, which will have 100 Tm bending power [17], as well as several storage rings
and experiment areas. The SIS100 will be able to reach an energy up to 29 GeV [18,
p.3]. The already existing particle accelerator SIS18 from GSI will be the injector
for SIS100.

In general, researchers at FAIR create conditions in the laboratory that matter is
normally exposed to in large planets, stars, and stellar explosions. These conditions
include very high temperatures, pressures and densities. To produce these conditions,
ions are beamed at small samples of matter using a particle accelerator. For a very
short time, cosmic matter is then created at the collision points. [19]

The QCD phase diagram shows how strongly interacting matter behaves by varia-
tion of temperature T, baryon-chemical potential µB , and isospin-chemical potential
µI . As it is shown in Figure 2.2, normal nuclei exist only in a small area with low tem-
perature and small µB and µI . Increasing the temperature T and µB results hadronic
matter, which consists of nucleons, baryonic resonances and mesons. CBM will
concentrate on high baryon density (seen in the diagram with high baryon-chemical
potential). This will be done at heavy-ion collisions at moderate temperature and
high density. The experiments ALICE (Large Hadron Collider (LHC)) and STAR
(Relativistic Heavy Ion Collider (RHIC)) on the other hand can explore the area with
low baryon density, but high temperature. [20] [21]

Figure 2.2: 3-dimensional QCD phase diagram. On the x-axis, the isospin-chemical potential
µI is shown, the y-axis shows the baryon-chemical potential µB and the z-axis the temperature
T. The grey arrow on the right shows the area of the CBM experiment with the synchrotron
SIS100. The grey arrow in the middle indicates the research area of the ALICE experiment
at the LHC. [22]

4

Compressed Baryonic Matter Experiment at FAIR

2.1 The CBM Detector Setup
The CBM experiment is a fixed target experiment. The target in CBM is typically
100µm thin [23]. CBM will contain 8 detectors:

• Micro-Vertex Detector (MVD)

• Silicon Tracking System (STS)

• Ring Imaging Cherenkov detector (RICH)

• Muon Chambers (MuCh)

• Transition Radiation Detector (TRD)

• Time Of Flight detector (TOF)

• Electromagnetic CALorimeter (ECAL)

• Projectile Spectator Detector (PSD)

Dipole Magnet

Silicon Tracking System (STS)

Transition Radiation Detector (TRD)

Time of Flight Detector (ToF)

Muon Chambers Detector (MuCh)

Micro Vertex Detector (MVD)

Ring Imaging Cherenkov Detector (RICH)

Target

Electromagnetic Calorimeter (ECAL)

Projectile Spectator Detector (PSD)

Figure 2.3: Detector setup of the CBM experiment. [24]

The Silicon Tracking System (STS) and the Micro-Vertex Detector (MVD) are
located in the dipole magnet, as visualized in Figure 2.3. They form together a
silicon tracking and vertex detection system. The STS consists of low-mass silicon
micro-strip detectors and maybe also include one or two hybrid-pixel detector layers,
which can provide unambiguous space point measurements[10, p. 877]. STS is used
for track reconstruction and momentum determination of charged particles [10, p.
880]. Using STS, a track reconstruction in a wide momentum range from about 100
MeV up to more than 10 GeV is possible with a moment resolution of 1% [10, p.

5

Compressed Baryonic Matter Experiment at FAIR

877]

The Micro-Vertex Detector (MVD) will be deployed specifically for precise mea-
surements of open charm and also for determining secondary decay vertices of D
mesons with a high precision. Especially the determination of the secondary vertices
of D mesons is important to suppress the background of pions and kaons, since D
mesons decay quickly in pions and kaons. It will also be used for electron mea-
surements to filter out close pairs, thereby minimizing combinatorial background.
To achieve this, the MVD consists of two layers of monolithic active silicon pixel
sensors, located at 10 and 20 cm from the target. A possible third layer would be
located only 5 cm away from the target. In addition, the MVD detector enhances
hyperon identification.[10, p. 877,880, 881, 898]

The Ring Imaging Cherenkov detector (RICH) has the capability to measure
electrons and suppress pions with momentum less than 8 GeV/c, while the Transition
Radiation Detector TRD identifies electrons and positrons with momentum above
1.5 GeV/c. Three TRD units, each with 3-4 detector layers, are planned and are
anticipated to exceed a pion suppression factor of 100, while maintaining a 90%
electron efficiency. [10, p.881 - 882]

The Muon Tracking Chambers (MuCh), along with an active hadron absorber
system featuring layers of iron, will be used for measuring muons. For this function,
the MuCh will be located where the RICH currently resides [10, p.878] and will
replace TRD and ECAL additionally [4, p. 14]. This low-momentum muons have to
be identified among high particle densities.

The Time Of Flight TOF detector is a 120m2 wall, made of Multigap Resistive
Plate Chambers (MRPC) [10, p. 883] [25]. TOF is designed for identifying charged
hadrons up to a momentum of approximately 4 GeV/c. For this, a system time resolu-
tion below 80ps and a 95% efficiency is required [25]. Additionally, they must be
capable of managing high-density particle streams [25].

The Electromagnetic Calorimeter ECAL will be used for the measurement of
direct photons and the neutral mesons like π0, η, which decay into photons. It is a
so-called ”shashlik” type calorimeter and will have 140 layers.[10, p. 884]

The Projectile Spectator Detector (PSD) will serve to discern if a collision is
either central or peripheral, as well as to establish the orientation of the reaction
plane. Additionally, it identifies the non-interacting nucleons in a nucleus-nucleus
collision. [10, p. 884]

2.2 Basic Knowledge of Quarks
Each atom comprises an atomic nucleus and orbiting electrons, which belongs to
the leptons. The nucleus of an atom is minuscule and comprises the majority of the
matter. The hydrogen atom, for instance, has a size of approximately 10−10m, while
the nucleus is only 10−15m in size, i.e. around 100,000 times smaller than the entire
atom [26, p.148]. The nucleus is composed of nucleons: positively charged protons

6

Compressed Baryonic Matter Experiment at FAIR
The evolution of matter in the universe

Figure 2.4: Standard model of particle physics [28]. Listed are all of the 6 quarks, the
gauge bosons like gluons and the leptons like electron or muon and, additionally, the 2012
first discovered Higgs boson. All particles are listed together with their approximated mass,
electric charge measured in e and spin, the intrinsic angular momentum

(p+) and neutrally charged neutrons (n). Both of them are baryons, belonging to
the hadrons. Except for hydrogen, all atomic nuclei contain multiple nucleons in
the form of protons and neutrons. The nucleus of a hydrogen atom consists of only
one proton. Protons and neutrons, in contrast to leptons, are each made up of three
quarks. There are six different types (flavors) of quarks known: up (u), down (d),
strange (s), charm (c), bottom (b) and top (t) [27, p. 8]. In Figure 2.4, all quarks,
leptons and bosons are listed together with the approximated mass and electric charge.
The electric charge is here, as usual, measured in units of the elementary charge (e),
which is about 1.602 · 10−19 coulomb [26, p.86, p.158]. Stable matter comprises
solely of up and down quarks, Protons consist of two up quarks and one down quark:
p+ = uud, while neutrons comprise one up quark and two down quarks: n = udd.
The other quark flavors can be found in short-lived hadrons, like the baryon lambda
(Λ) which consists of one up quark, one down quark and one strange quark: Λ = uds.

According to quantum chromodynamics (QCD), a quark possesses not only
electric charge but also strong charge, also known as color charge [27, p.8]. There
are three types of color charge: red, green and blue [26, p.158]. For each quark is
also one antiquark, which has the opposite charges, the complementary colors [29,
p.54,55]. Under normal circumstances quarks never move freely, they are always
in threes within baryons or twos in mesons [27, p.8]. The summed up color of the
quarks in one particle is always white [29, p.55]. The reason for this are the gluons,
which belongs to the gauge bosons. There are known exchange bosons for almost all
of the four fundamental interactions, except for gravity, where the exchange boson
has not yet been found [29, p.52]. Exchange bosons are seen as force carriers. While
the photon is exchanged as an exchange boson in order to interact with each other in
the case of electrically charged particles, it is the gluon in the case of particles that
have a strong interaction and a color charge [27, p.8]. Gluons have eight possible
types of color charge and are the reason why quarks are never isolated in normal

7

Compressed Baryonic Matter Experiment at FAIR

circumstances. However, there is a state that does exist in heavy-ion collisions, called
quark gluon plasma (QGP) [1]. Within this plasma, quarks and gluons were bound
only weakly and can move freely. This plasma is one of the research areas of the
future CBM experiment.

2.3 CBM Research Area
The objectives of the CBM experiment is to investigate the quantum chromo dy-
namics (QCD) phase diagram at the region of high baryon densities [10, p. 37]
similar to the inner core of neutron stars. Other goals include the investigation of the
equation-of-state of nuclear matter at densities, also similar to the cores of neutron
stars and the analysis of phase transitions, chiral symmetry restoration, and exotic
forms of QCD matter, including strange QCD matter [30].

With collisions of higher energy and density levels, such as it can be produced at
FAIR, it is possible for atomic nuclei to compress during the collision to the point
where the nuclei touch and attempt to resist further compression. With increased den-
sity of nuclear matter, as it can be achieved in the CBM experiment, the nuclei begin
to overlap and dissolve. This results in the formation of a Quark-Gluon Plasma (QGP).
Within this plasma, quarks and gluons, which are normally confined within hadrons,
are free to move and interact with each other. [31]
This QGP was first discovered at RHIC [1]. However, at lower beam energies of the
CBM research program, the creation of QGP is unlikely.

After the QGP phase, the quarks and gluons combine each other again in new
color-neutral hadrons. Generally, the produced particles can be categorized into long-
lived and short-lived particles. The former are directly detectable by the detectors,
including stable particles and those with an extended decay length cτ [4, p.63]. In
contrast, short-lived particles are not detected, since they never reach any tracking
system before their decay. These particles must be reconstructed using their decay
products, commonly referred to as daughters, with the original particle termed the
mother.

In Figure 2.5, an illustration of the decay of the particle Ω
+ into Λ and K+ is

shown, as part of a simulated central Au-Au collision at an energy level of 25 AGeV
(GeV per nucleon). Consequently, two secondary vertices are observed: the initial
decay vertex of Ω+ and the subsequent decay vertex of Λ, which further decays
into π+ and p. One important challenge of the CBM experiment is to reconstruct
the short-lived particles. Due to their rarity, a significant number of collisions are
required to detect them online, including these decay chains. Regarding the CBM
experiment, the collision rate will be up to 10 MHz [9], with measured data up to 1
TB/s [32]. This complexity requires a sophisticated reconstruction process that relies
on both time and spatial parameters.

8

Compressed Baryonic Matter Experiment at FAIR

Figure 2.5: The decay of the particle Ω+ in Λ and K+ in a simulated central Au-Au collision
with an energy of 25 AGeV (GeV per nucleon). Another secondary vertex is seen at Λ
resulting in the daughter particles π+ and antiproton p. The simulation was done for the
CBM experiment and resulted in about 1000 charged particles. [4, p. 8]

9

Compressed Baryonic Matter Experiment at FAIR

10

Kalman Filter Particle Finder Package

Chapter 3

Kalman Filter Particle Finder
Package

The collision rate of the CBM experiment will be up to 10 MHz [9], with created data
streams of up to 1 TB/s [32]. Due to this huge data rate, it is impossible to store all
collision measurements. On the other hand, CBM requires this high interaction rate
for its search for rare particles. Therefore, it is needed to select the most interesting
events for the current research online. For this, the First Level Event Selection pack-
age (FLES package) [33] is used, which is shown in Figure 3.1. With this package,
each event topology can be reconstructed [32] for a physics analysis and, thus, to find
events of interest. The FLES package includes several modules and has to be very
fast on CPUs, since only them are used for selecting the data [34].

FLES

18

Prof. Dr. Ivan Kisel, Uni-Frankfurt, FIAS, GSI CBM Retreat, 24.06.2017 /2

First Level Event Selection (FLES) Package

2

CA Track Finder

KF Track Fit

Event Builder

KF Particle Finder

Physics Analysis

Event Selection

FLES

OutputMonte-Carlo

Histograms

Efficiency

InputGeometry Measurements

Simulated AuAu collision at 25 AGeV

π+

Κ+

p

Ω+ Λ

Figure 3.1: Illustration of the architecture of the FLES package [35]

Some of those modules are based on the Kalman filter. The Kalman filter is a
method which was first introduced by Rudolf E. Kalman in 1960 [36] and updated
1961 [37]. It was originally intended for discrete-time linear systems and can estimate

11

Kalman Filter Particle Finder Package

the system states and parameters from noisy and partially redundant measurements
[38, p. 3]. A major advantage over other stochastic estimation methods is its iterative
structure, which makes it particularly suitable for real-time applications [38, p. 3], as
it is also required for CBM. Nowadays, there are extended methods of the Kalman
filter that also work for continuous and non-linear systems[39].

The first module in the FLES package is the 4-dimensional (space and time)
Cellular Automaton Track Finder (CA Track Finder) [40], which is an efficient track-
ing algorithm based on cellular automaton. Using this, the tracks of the charged
particles are reconstructed, since they can be detected by the detectors, due to their
interaction with the detector materials. The second module is the Kalman Filter
Track Fit (KF Track Fit) library [41]. With this Kalman filter based module, the
track parameters and covariance matrices are estimated with high precision. This
high precision is necessary for finding rare events of interest. After the KF Track Fit,
the tracks that have been fitted are divided into events according to the fitted track
time, with an event reconstruction efficiency of 83% [42]. Subsequently, short-lived
decayed particles are reconstructed and selected using the KF Particle Finder package
[4], with which they are reconstructed from their decay products, the so called daugh-
ter particles. After the KF Particle Finder package, an event is fully reconstructed.
Based on this, a physics analysis can be applied and the events of interest can be
selected afterwards.

The FLES package takes as an input the geometry of the detector, like the dis-
tances between detectors or the target, and, the measurements of the detectors. In
the case of simulated events, the output of FLES package can be compared with
the simulated data to allow a performance analysis of the reconstruction processes.
Additionally, histograms are created and the efficiencies calculated.

For the present work, simulations are created using the Monte-Carlo (MC) simu-
lation package Ultra-relativistic Quantum Molecular Dynamics (UrQMD) [43]. The
simulated data is employed to enable an evaluation of the proposed approach and a
thorough comparison with the default approach of the KF Particle Finder package.
Additionally, this enables the application of supervised learning methods, as the true
outcomes are known from the simulated data.

The investigated particle Λ consists of an up-, down- and a strange-quark. On
the one hand, strange quarks are expected to indicate deconfined matter [7]. On the
other hand, Λ is a particle that is created frequently in the energy ranges of the CBM
experiment [44]. This makes Λ to an indicator that can be used to perform further
research in this area.

The Λ-hyperon can decay in different types of particles. The branch ratios, which
is the probability of the decay modes, of possible Λ-decays are given in Figure 3.2.
The first decay, Λ → pπ−, is discussed within this thesis, as it is the only 2-daughter
decay with two charged daughter particles.

12

Kalman Filter Particle Finder Package

Λ → pπ− (BR: 63.9 ± 0.5)
Λ → nπ0 (BR: 35.8 ± 0.5)
Λ → nγ (BR: (1.75 ± 0.15) · 10−3)
Λ → pπ−γ (BR: (8.4 ± 1.4)· 10−4)
λ → pe−ν̄e (BR: (8.32 ± 0.14) · 10−4)
Λ → pµ−ν̄µ (BR: (1.57 ± 0.35) · 10−4)

Figure 3.2: The branch ratios of the possible decays of Λ [45, p. 1127], after its lifetime of
approximately τ = (2.632± 0.020)× 10−10s.

3.1 Functionality of KF Particle Finder Package
The KF Particle Finder package was developed in C++ for the online reconstruction
and selection of short-lived particles. The package is fully vectorized and parallelized
to provide the ability for a fast online reconstruction on a high performance computer
cluster. Additionally, it has a robust linear scalability on multi-core architectures with
at least as many as 80 cores. [4, p.36,p.112, p.117]

The package is based on the Kalman Filter method and is able to search more
than 150 decay channels [46], which can be seen in Figure 3.3.

For the reconstruction, the particle tracks and particles created by FLES are
divided into primary and secondary tracks. Primary tracks are the tracks that can
be extrapolated to the primary collision point. Secondary tracks are those that be-
long to decay products of short-lived particles. Both, secondary and primary tracks
are subdivided into positively and negatively charged tracks. This subdivision is
necessary for the reconstruction of the respective particles. In order to be able to
reconstruct the short-lived particles, the possible daughter tracks are extrapolated
to find possible points of decay, so called secondary vertices. Then, all possible
mother particle candidates for that specific decay are reconstructed in the package.
While this approach allows to find all possible occurrences of particles, the multiple
creation of mother particle candidates hinders the physics analysis, since it is not
clear which particle really decayed. To solve this problem in the KF Particle Finder
package, statistical cuts are applied to reject particles that have a high probability to
be mistakenly reconstructed. Additionally, a particle competition can be enabled to
find the best fitting mother particle candidates and to reject wrongly reconstructed
ones, to improve the physics analysis quality.

Generally, with respect to the reconstructed particles, the KF Particle Finder pack-
age is designed in a recursive way. Starting from tracks and their respective particles,
the package is also capable to reconstruct decay chains by handling reconstructed
mother particles the same way. By that, reconstructed mother particle candidates
and their extrapolated tracks can be used to find decays, where a mother particle was
a decay product and is therefore also considered as a daughter particle at the same time.

13

Kalman Filter Particle Finder Package

Ivan K
isel, U

ni-Frankfurt, FIA
S

, G
S

I, H
FH

F
D

P
G

-2023, D
resden, 23.03.2023 /34

22

C
B

M
: K

F P
article Finder for short-lived P

articles

H
eavy FlavourO

pen-charm

resonances
D

*0 →
 D

+ π
-

D̅
*0 →

 D
- π

+

D
*+ →

 D
0 π

+

D
*- →

 D̅
0 π

-

O
pen-charm

particles

D
0 →

 K
- π

+

D
0 →

 K
- π

+ π
+ π

-

D
0 →

 K
+K

-

D
0 →

 π
+ π

-

D
0 →

 K
0s π

+ π
-

D
0 →

 K
+K

-K
0s

D
+ →

 K
- π

+ π
+

D
+ →

 π
+ π

+ π
-

D
+ →

 K
0s π

+ π
+ π

-

D
+ →

 K
0s π

+

D
s + →

 K
+ K

- π
+

D
s + →

 K
+ π

+ π
-

D
s + →

 K
0s K

+ π
+ π

-

D
s + →

 K
0s K

0s π
+

D
s + →

 K
0s K

+

Λ
c + →

 p K
- π

+

Λ
c + →

 p π
+ π

-

Λ
c + →

 p K
0s

Λ
c + →

 p K
0s π

+ π
-

Λ
c + →

 Λ
 π

+

Λ
c + →

 Λ
 π

+ π
+ π

-

Ξ
c 0 →

 Ξ
- π

+ π
+ π

-

+ antiparticles

C
harm

onium

J/ψ →
 pp̅

J/ψ
 →

 Λ
Λ̅

J/ψ
 →

 Ξ
-Ξ̅

+

ψ′ →
 Ω

-Ω̅
+

B
 m

esons
B

+ →
 D̅

0 π
+

B
- →

 D
0 π

-

B
+ →

 D̅
0 K

+

B
- →

 D
0 K

-

B
0 →

 D
- π

+

B̅
0 →

 D
+ π

-

B
0 →

 D
- K

+

B̅
0 →

 D
+ K

-

C
harged particles: e

±, µ
±, π

±, K
±, p

±, d
±, 3H

e
±, 4H

e
±

Strange particles

K
*

+ →
 K

+ π
0

K
*

- →
 K

- π
0

K
*

0 →
 K

0 π
0

Σ*
0 →

 Λ
 π

0
Σ̅*

0 →
 Λ̅

 π
0

Ξ
*- →

 Ξ
- π

0

Ξ̅
*+ →

 Ξ̅
+ π

0

Ξ
*0 →

 Ξ
- π

+

Ξ̅
*0 →

 Ξ̅
+ π

-

Ω
*- →

 Ξ
- K

- π
+

Ω̅
*+ →

 Ξ̅
+ K

+ π
-

K
*+ →

 K
0s π

+
K

*- →
 K

0s π
-

Σ
*+ →

 Λ
 π

+

Σ̅
*- →

 Λ̅
 π

-

Σ
*- →

 Λ
 π

-

Σ̅
*+ →

 Λ̅
 π

+

Ξ
*- →

 Λ
 K

-

Ξ̅
*+ →

 Λ̅
 K

+

K
*0 →

 K
+ π

-

K̅
*0 →

 K
- π

+

ϕ
→

 K
+ K

-

Λ
* →

 p K
-

Λ̅
* →

 p̅ K
+

K
0s →

 π
+ π

-

K
+ →

 µ
+ ν

µ

K
- →

 µ
- ν̅

µ

K
+ →

 π
+ π

0

K
- →

 π
- π

0

Λ
 →

 p π
-

Λ̅

→

 p̅
 π

+

Σ
+ →

 p π
0

Σ̅
- →

 p̅ π
0

Σ
+ →

 n π
+

Σ̅
- →

 n̅ π
-

Σ
- →

 n π
-

Σ̅
+ →

 n̅ π
+

Ξ
- →

 Λ
 π

-

Ξ̅
+ →

 Λ̅
 π

+

Ξ
- →

 Λ
 π

-

Ξ̅
+ →

 Λ̅
 π

+

Ω
- →

 Λ
 K

-

Ω̅
+ →

 Λ̅
 K

+

Ω
- →

 Λ
 K

-

Ω̅
+ →

 Λ̅
 K

+

Ω
- →

 Ξ
0 π

-

Ω̅
+ →

 Ξ̅
0 π

+

Σ
+ →

 p π
0

Σ̅
- →

 p̅ π
0

Σ
0 →

 Λ
 γ

Σ̅
0 →

 Λ̅
 γ

Ξ
0 →

 Λ
 π

0

Ξ̅
0 →

 Λ̅
 π

0

Strange resonances

N
eutral particles: ν

µ , ν̅
µ , π

0, n, n̅, Λ
, Λ̅

, Ξ
0, Ξ̅

0

D
ileptons

C
harm

onium

J/ψ →
 e

+ e
-

J/ψ →
 µ

+ µ
-

Low
 m

ass
vector m

esons
ρ →

 e
+ e

-

ρ →
 µ

+ µ
-

ω
 →

 e
+ e

-

ω
 →

 µ
+ µ

-

ϕ →
 e

+ e
-

ϕ →
 µ

+ µ
-

G
am

m
a

γ
→

 e
+ e

-

G
am

m
a-decays

π
0 →

 γ γ
η
→

 γ γ

π
+
→

 µ
+ ν

µ

π
-
→

 µ
- ν̅

µ

ρ
→

 π
+ π

-

Δ
0 →

 p π
-

Δ̅
0 →

 p̅ π
+

Δ
++ →

 p π
+

Δ̅
-- →

 p̅ π
-

Light m
esons

and baryons

H
yperm

atter

H
eavy m

ulti-
strange objects

{Λ
Λ

}
 →

 Λ
 p π

-

{Ξ
0Λ

} →
 Λ

 Λ

H
ypernuclei

{Λ
n} →

 d
+ π

-

{Λ̅
n̅} →

 d
- π

+

{Λ
nn} →

 t + π
-

{Λ̅
n̅n̅} →

 t - π
+

3Λ H

→

 3H
e

 π
-

3Λ H̅

→

 3H
e

 π
+

4Λ H

→

 4H
e

 π
-

4Λ H̅

→

 4H
e

 π
+

4Λ H
e →

 3H
e

 p π
-

4Λ H
e →

 3H
e

 p̅ π
+

5Λ H
e →

 4H
e

 p π
-

5Λ H
e →

 4H
e

 p̅ π
+

D
ouble-Λ

hypernuclei

4Λ
Λ H

 →
 4Λ H

e
 π

-

4Λ
Λ H

 →
 3Λ H

 p π
-

5Λ
Λ H

 →
 5Λ H

e
 π

-

6Λ
Λ H

e →
 5Λ H

e p
 π

+

M
. Zyzak, P. K

isel

Figure
3.3:

B
lock

diagram
ofthe

reconstructable
decaysofthe

K
F

Particle
Finderpackage

[47,p.22]

14

Kalman Filter Particle Finder Package

The KF Particle Finder package offers possibilities to measure its own perfor-
mance. In the case of simulated data, as is currently the case for the CBM experiment,
due to the unfinished particle accelerator, it is possible to compare this performance
with the simulated data. Then, an efficiency table and histograms of all reconstructed
events are created as an output. The four most important histograms for performance
analysis within the discussions of this thesis are the histograms for all reconstructed
Λ particles, the histogram of Λ combinatorial background, physical background and
reconstructed signal. The last three are compared against the simulated data, and
therefore, compared with the expected outputs of the package. The first histogram
shows all reconstructed Λ particles and, therefore, shows the results that would be the
output in a real experiment. The physical background histogram shows the particles
that were reconstructed as Λ, but a comparison to MC information showed that they
were actually a different particle. Combinatorial background is another type of noise,
that is created by particles that were reconstructed but never existed. This is espe-
cially the case for the already mentioned mother particles, were all possible mother
particles are created, but only a single one of them is the correct one. If cuts and
the competition are not sufficient to reject these particles, they produce noise in the
reconstructed Λ distribution. Signal, on the other hand, shows correctly reconstructed
Λ particles that were confirmed by MC information.

3.2 Structure of the Package
The KF Particle Finder package is comprehensive, so this section provides a broad
summary rather than a detailed breakdown of its architecture. To keep within the
focus of this study, some classes are not discussed. The package is organized into
two main directories: KFParticle and KFParticlePerformance. The KFParticle

directory includes the main classes, which focuses on fundamental aspects like
particle reconstruction. In the following, the focus will lay on the classes mentioned
below:

• KFParticle and KFParticleBase

• KFParticleSIMD and KFParticleBaseSIMD

• KFParticleTopoReconstructor

• KFParticleFinder

The KFParticlePerformance folder contains classes that assess the performance
of the KFParticle package. Regarding this directory, the classes KFTopoPerformance
and KFPartEfficiencies will be shortly discussed. The whole package can be found
in the CbmRoot [48].

The primary scalar class KFParticle in the KF Particle package serves to repre-
sent a particle object. A particle is specified by a state vector consisting of its spatial
coordinates (X, Y, Z), momentum (Px, Py, Pz), energy level, and S value (defined as
decay length divided by momentum). This is supplemented by an associated matrix
to estimate covariance, which allows to calculate the χ2-criterion, which is utilized to
gauge the quality of the reconstructed output [4, p.65]. The class includes functionali-
ties for forming particle objects from given tracks and for creating short-lived particles

15

Kalman Filter Particle Finder Package

using either other tracks or pre-existing particles. The mathematics used in this class
is based on the principles of Kalman filter. In the context of this thesis, it is significant
to point out that this class holds various parameters like the unique ID of the parti-
cle, daughter particle IDs, the χ2-value, and the number of degrees of freedom (NDF).

KFParticleSIMD acts as the vectorized form of the original KFParticle class
and is derived from KFParticleSIMDBase. It offers functionalities comparable to its
scalar counterparts. By leveraging the Single Instruction, Multiple Data (SIMD) de-
sign, this class enables parallel processing, carrying out the same tasks on numerous
data points simultaneously, which results in faster computations.

The Particle Data Group (PDG) has created a list in which all known particles
have been assigned a so-called PDG code, which is also used in the KFPF to identify
the particles [45]. Beside the PDG code that is a unique particle ID, the PDG mass is
also assigned. The PDG mass refers to the mass a specific particle is expected to have.
Each particle in the package is assigned a PDG hypothesis that states which particle
it presumably is. For Λ the PDG code is 3122, for the daughters π− and p+ -211 and
2212 respectively. All possible PDG codes are listed in the KFPartEfficiencies

class in the KFParticlePerformance package. Each particle has one hypothesis.

The KFParticleTopoReconstructor class receives the track data from the track
finder with the PDG hypothesis as an input. It then reconstructs potential primary
vertices, categorizes tracks as either primary or secondary, and further sorts them
into positive and negative tracks based on the PDG hypothesis. After that, short-
lived particles are constructed, and optionally, a comparison is performed among
various particle hypotheses for the constructed candidates. The reconstruction of
short-lived particles is done by calling the main interface method FindParticles of
the KFParticleFinder class, which runs the reconstruction of short-lived particles.
All reconstructed particles are saved in the array fParticles defined in the header
file of KFParticleTopoReconstructor.

The KFParticleFinder class is for the reconstruction of short-lived particles by
combining long-lived and previously reconstructed short-lived particles. It requires
tracks and primary vertices as an input. It also uses hardcoded cuts, which are defined
in this class, like χ2

geo, χ2
prim, l/∆l and a few more for different approaches. These

cuts are used as threshold parameters for particle selection. The defined cuts have
default values, those values can be overwritten, depending on the experiment, as it is
done for a few one for the CBM experiment. It is possible to get each reconstructed
particle, since they are all stored together in one array in the KFParticleFinder. For
the reconstruction of short-lived particles with one neutral daughter, the missing
mass method [24] is implemented.

In the KFTopoPerformance class compiles various histograms for each particle
identified by the KF Particle reconstruction scheme. These histograms cover parame-
ter distribution, efficiencies, fit quality, and other metrics, including those related to
primary vertex quality.

16

Artificial Neural Networks

Chapter 4

Artificial Neural Networks

In August 1955, John McCarthy, Marvin L. Minsky, Nathaniel Rochester and Claude
E. Shannon made ’’A Proposal for the Dartmouth Summer Research Project on Ar-
tificial Intelligence’’, which took place in 1956 [49]. In this proposal they defined
the term artificial intelligent and some aspects of the artificial intelligence problem.
The study was ’’[...] to proceed on the basis of the conjecture that every aspect of
learning or any other feature of intelligence can in principle be so precisely described
that a machine can be made to simulate it’’ [49, p.2]. This workshop is considered as
the start of the research field Artificial Intelligence (AI).

Machine Learning (ML) is a subfield of AI and describes the capability to ex-
tract patterns from raw data. This is necessary for AI systems to acquire their own
knowledge [50, p.2]. To be able to extract patterns from raw data, the algorithm or
the machine learning model has to learn those patterns. There are different types of
learning, the best known of which will be described in more detail later.

One subfield of ML is the field of Artificial Neural Networks, for whose the single
perceptron of Rosenblatt [51] was one of the origins. In the early years, research
stopped due to discovered limitations of the model. While these problems were
solved by more complex models (e.g. Multilayer Perceptron (MLP)s), the limitations
in computational power hindered deep research in the area for several years. However,
in the last decades, since multi-core CPUs and GPUs have become more powerful,
research on neural networks has surged. Not only one is capable to chose models
with a large complexity that outperformed existing approaches, such as convolutional
neural networks [52], recurrent neural networks [53] or deep neural networks [54].
Additionally, it is possible to use data sets with millions of different input features
[55] that help to create a neural network with unprecedented rates of accuracy for
complex problems.

4.1 The Perceptron by Rosenblatt
The current understanding of a neural network is based on the single perceptron by
Rosenblatt [51]. The single perceptron for solving a binary problem can be seen
as one single neuron with n inputs a0, a1, ..., an−1. Each input ai has one weighted
connection to the neuron. The weight of input i to the neuron will be noticed in the
following as wi. The neuron can assume two states: active and inactive. If the neuron

17

Artificial Neural Networks

is active, it will output the value 1, if it is inactive 0. The neuron is active when∑n−1
i=0 wiai ≥ θ, while θ is a threshold, otherwise the neuron is inactive. [56, p. 60,

Definition 1]
One of the best known problems of a single perceptron is the XOR problem and

with it the problem of linear separability, which is described in the following.

A problem or function is linear separable if values w0, ..., wn exists with wi ∈ R
for subsets B ⊆ Rn−1,~b = (b0, ..., bn−1) ∈ B and C ⊆ Rn−1, ~c = (c0, ..., cn−1) ∈ C
such that

∑n−1
i=0 wibi ≥ wn >

∑n−1
j=0 wjcj applies [56, p. 63, Definition 2].

A visualization of a linear separable function is shown in Figure 4.1.

Figure 4.1: Graph to visualize a linear separable function. In this 2-dimensional case, it is
possible to separate all green and red data points by a 1-dimensional hyperplane (line).

The OR-Problem with the input ~a = (a0, a1) with a0 ∈ {0, 1} and a1 ∈ {0, 1}
can be solved by one single perceptron as this problem is linear separable. With the
definition of a single perceptron we get the following equation:

Output(~a) =

{
1 for

∑1
i=0 aiwi ≥ θ

0, for
∑1

i=0 aiwi < θ

}

In the case of the OR-Problem Output(~a) should be 0 if a0 = 0 and a1 = 0
otherwise it should be 1. When considering each combination, one can see that it is
possible to solve this problem with a simple perceptron:

~a = (0, 0); 0 · w0 + 0 · w1 = 0 < θ (4.1)
~a = (0, 1); 0 · w0 + 1 · w1 = w1 ≥ θ (4.2)
~a = (1, 0); 1 · w0 + 0 · w1 = w0 ≥ θ (4.3)
~a = (1, 1); 1 · w0 + 1 · w1 = w0 + w1 ≥ θ (4.4)

If w0 and w1 are each greater or equal than the threshold θ to fulfill equation 4.2
and 4.3, than also w0 + w1 ≥ θ, which means that the definition of the OR-Problem

18

Artificial Neural Networks

is fulfilled.

But for the XOR-Problem, which is not linear separable, the following equations
are required:

~a = (0, 0); 0 · w0 + 0 · w1 = 0 < θ (4.5)
~a = (0, 1); 0 · w0 + 1 · w1 = w1 ≥ θ (4.6)
~a = (1, 0); 1 · w0 + 0 · w1 = w0 ≥ θ (4.7)
~a = (1, 1); 1 · w0 + 1 · w1 = w0 + w1 < θ (4.8)

However, since there is only one threshold, it is impossible to solve. If w0 and
w1 are each greater or equal than the threshold θ to fulfill equation 4.6 and 4.7, then
w0 + w1 ≥ θ which is contrary to equation 4.8.

The concept of the MLP is a neural network model which solves this problem by
adding more layers, neurons and non-linear activation functions.

4.2 Multilayer Perceptron
A Multilayer Perceptron (MLP) consists of three or more layers with neurons, one
input layer, one output layer and one or more hidden layer between the input and
output layer. Previously, the input was not considered as a separate layer. However,
when describing multilayer perceptrons, it is often mentioned as a layer.

The input layer is the first layer of the MLP. The neurons of this layer hold the
input data which consists of so-called input features on which the neural network is
trained on. The number of neurons of the input layer is equal to the number of input
features, e.g. the pixel values of an image to be classified or data points on which a
regression should be performed. The layer directly after the input layer is the hidden
layer. The neurons of this layer are calculated by the weighted sum of neuron outputs
received from the previous layer, that are then activated by a non-linear activation
function. Non-linear activation functions are crucial in multilayer perceptrons to
provide the network with the capability to approximate complex, non-linear map-
pings from inputs to outputs. Using only linear activation functions would limit
the network to linear transformations and render the use of multiple layers unneces-
sary, as the composition of linear functions is itself linear [50, p. 167]. Nonlinear
activation functions introduce the necessary complexity and allow the network to
learn high-level abstractions in the data. Therefore, nonlinear activation functions
are indispensable to solve complex problems that are not linearly separable. The last
layer is the output layer. The number of the output neurons depends on the output
that is wanted to produce with the neural network. For example, a network which
should solve a classification problem with three possible classifications a, b, c would
have three neurons, one neuron per class. The output values would correspond to the
predicted class, whereas the exact outcomes and interpretation is depending on the

19

Artificial Neural Networks

activation function of the output layer.

In a fully connected neural network, each neuron of a layer of the MLP has
weighted connections to each neuron of the next layer, which is visualized in Fig-
ure 4.2. The connections of the neurons of an MLP are not recurrent, that means
that they only lead from the current neuron to the neuron of the next layer. Usually,
weights are represented as floating point values, such that each weight can be positive,
negative or neutral. A positive weight is an excitatory weight, whereas a negative
weight is an inhibitory weight. A weight which has a value of zero is a neutral weight,
which means that the neuron from which the weight emanates does not influence the
following layer and thus has no impact on the final output.

x1

x2

x3

Input
layer

h1

h2

h3

h4

Hidden
layer

ŷ1

Output
layer

Figure 4.2: Representation of an MLP with an input layer of 3 neurons (green), one hidden
layer of 4 neurons (blue) and an output layer of 1 neuron (red)

Using a MLP the input features have to be propagated forward through the network.
For training, an optimization algorithm is often used together with backpropagation,
to propagate the error back to the input layer and thus allow to adjust all weights of
the network in a way that the network actually learns the patterns of given training
data. These algorithms will be explained in the following sections.

4.3 Forward Propagation

As each layer consists of multiple neurons, one can represent each layer as a vector
of neurons and the weights between two layers k − 1 and k as a weight matrix w(k).
As the input layer has no previous layer and also normally no activation function,
the neurons of the input layer include only the input features, which are propagated
directly to the next layer by multiplying the input feature vector with the weight
matrix. For each neuron of other layers than the input layer, the following structure
applies:

The input a(k)i of neuron i of the current layer k is calculated by summarizing the
bias b(k)i with the sum over all neurons from the previous layer k − 1 multiplied with
the weight of each connection [50, p.205].

20

Artificial Neural Networks

a
(k)
i = b

(k)
i +

n(k−1)−1∑
j=0

h
(k−1)
j · w(k)

ij

with a
(k)
i := input of neuron i of layer k

n(k−1) := number of neurons of the previous layer k − 1;
h
(k−1)
j := output of neuron j of the previous layer k − 1;

w
(k)
ij := weight between neuron i and j;

b
(k)
i := bias for neuron i of layer k

The bias is a neuron which additionally influences the neuron a
(k)
i . It has no

input and an activation level which is always 1. The bias has weighted connections
between the neurons of one layer, whose weights can be positive or negative. [57, p.
29]

Since the impact of the bias neuron on the next layer’s neurons is only depending
on the weight, its weights allow shifting the values of the next layer with a set of
trainable parameters. This procedure allows the MLP to represent functions of higher
complexity and, thus, to improve its capability and performance.

Subsequently, neuron i of layer k will be assigned to an activation level by using
an activation function f [50, p.205].

h
(k)
i = f(a

(k)
i)

with h
(k)
i := output of neuron i of layer k;

f(a
(k)
i) := activation level of neuron i of layer k

The activation functions have severe impact on the neural networks’ performance.
The features that have to be learned by the model are depend on the specific task, but
the capability of the function the model represents is depending on the activation
functions used. That means, whether the model can represent the data and learned
features in a good way is depending on the chosen activation functions. Furthermore,
the use of specific activation functions allow interpreting the results in a comfortable
way. For instance in classification problems, Softmax activation is often preferred
for the output layer, since the output can be interpreted as a probability distribution
of the predicted classes.

However, not any non-linear activation function can be chosen for the activation
of neurons. Since for a gradient descent based approaches the calculation of the
gradients is mandatory, the function has to be differentiable in every point. In some
cases, e.g. for Rectified Linear Unit or Leaky Rectified Linear Unit activation, which
are not differentiable for a(k)i = 0, one can solve this problem by logical arguments.
Here, a(k)i = 0 leads to a neuron output of 0 and, therefore, the neuron has no impact
to following layers nor the final result. Thus, one can argue that a gradient of 0 for
a
(k)
i = 0 is reasonable, such that the neuron has no impact but also no weight update.

For any other point, these functions are differentiable.

21

Artificial Neural Networks

4.4 Neural Network Training Paradigms and Key Ter-
minologies

As mentioned before, machine learning is the capability to extract patterns from
raw data and must acquire their own knowledge to achieve this. This acquisition of
knowledge is called learning. There are different types of learning, where 3 types
are the most known: supervised learning, unsupervised learning and reinforcement
learning. Also, neural networks, as a part of machine learning, use these types.
Before getting more in detail in the learning process of neural networks, the three
types are shortly explained.

In supervised learning[58, p.9, et seq.], labeled examples are provided to the
model or algorithm. These labeled examples consist of input data and corresponding
desired output, also referred to as labels or target values, that the model should learn
to predict. The goal of the model is to be able to make accurate predictions on new,
unseen data. During the training phase, the model is presented with the labeled
examples. The model adjusts its internal parameters to minimize the difference
between its predictions and the truth provided by labels in the training data. This
process involves optimization algorithms that fine-tune the model’s parameters to
reduce prediction errors.

Unsupervised learning [58, p.485, et seq.] focuses on finding patterns, structures,
or relationships in data without using labeled examples. In other words, in unsuper-
vised learning, the algorithm explores the inherent structure of the data without being
guided by predetermined correct answers. Unsupervised learning comes into play,
for example when one wants to uncover hidden patterns, group similar data points,
or reduce the dimensionality of the data. One common task in unsupervised learning
is clustering. The goal is to group similar data points together into clusters, where
points within the same cluster are more similar to each other than to points in other
clusters. This helps in discovering natural groupings or segments within the data.
One well known neural network for solving this is the Self Organizing Map (SOM)
[59].

Reinforcement learning [60] is about training agents to make a series of deci-
sions in an environment to maximize cumulative rewards. This learning paradigm is
inspired by behavioral psychology, where agents learn through trial and error how
to interact with their environment to achieve desired outcomes. Thus, the agent
performs an action, the environment responds, and the agent learns from the results
to improve its decision strategy over time. In reinforcement learning, one has two
main components: the agent and the environment. The agent is the learner that
takes actions, whereas the environment is the context in which the agent operates.
The environment responds to the agent’s actions by rewards or penalties, and this
interaction generates the agent’s experiences.

To discuss the training more in detail, the terms epochs and batches should be
introduced first. An epoch refers to a single pass through the entire data set during
the training process. The network processes all available training data in a sequential
or random order, depending on the selected training strategy. During training, usually

22

Artificial Neural Networks

several epochs are used, so that the parameters keep adjusting to improve the per-
formance of the model. Using basic weight optimization algorithms, often repeated
iterations can result in overfitting. In this state, the neural network begins to learn the
noise present in the training data rather than the underlying patterns. Therefore, the
network has lost its ability for generalization and will perform worse on unseen data.

A batch, on the other hand, is a subset of the entire data set. Batches are used to
update the weights already during an epoch and not only after a pass of the whole
data set. This has several advantages. Firstly, some data sets are too large to fit into
the computers’ memory, leading to problems with training on the whole data set.
Secondly, each batch element is independent of another, such that parallel processing
is possible to perform faster training on modern multi-core CPUs or GPUs.

The whole learning process of a neural network can be separated mainly in three
phases: the training phase, the validation phase and the test phase. The training phase
is the phase in which the neural network adjusts its weights, which means that in this
phase, the network learns the correct parameters for each connection based on the
training dataset. The validation phase is used to tune the hyperparameters, i.e., the
non-trainable parameters that define the model, such as the number of neurons, the
network depth, or the learning rate. It consists of a subset of the full dataset that is
not used for training. It is used to measure the network’s performance on unseen
data and can help to identify overfitting. During the test phase, the neural network is
evaluated using again unknown input features (another unseen subset of the full data
set) and thus it can be determined how well the neural network solves the problem.
The difference between the validation and testing data set is that the final model is
usually chosen by the validation phase results. However, this decision can be biased,
since the model with the best results on the validation set is chosen. To avoid this
biased decision, the testing set is used to see the final performance on unseen data
again.

4.5 Training by Supervised Learning

If the neural network learns by means of supervised learning, it receives the correct
output as feedback, the already mentioned true labels. This means, that for each data
set of input features, the correct values for the output has to be available, so that these
can then be compared with the values calculated by the network. For comparison,
a so-called loss (also error or cost) is calculated by a loss function, which takes the
output of the network and the true labels as an input. The loss function evaluates
the difference of calculated output values and the target values. How the weights are
updated is determined by the choice of the optimization algorithm and the calculated
loss.

One popular loss function for classification problems is the cross-entropy, which
is also employed in the presented MLP in this work and will be first discussed before
delving deeper into the training of the MLP.

23

Artificial Neural Networks

4.5.1 Cross-Entropy
The cross-entropy loss function combines a measure of uncertainty with the ability
to evaluate the difference between two probability distributions. In the context of
neural networks and supervised learning, the computed outputs of the neural network
and the true labels each form a probability distribution. This makes the cross-entropy
a suitable loss function to evaluate the network’s performance in a supervised classi-
fication task as it is presented in this work.

The theory behind cross-entropy is that rare events are considered more informa-
tive than frequent ones. A function that fulfills this condition is the one that describes
the self-information [50, p. 71]:

I(x) = −log(P (x))

with x := event, P (x) := probability of x

With this definition, a guaranteed event with probability of 1 results in a self-
information of 0, whereas a rare event has a huge self-information, rapidly increasing
with a lower probability. To apply this theory to multiple events, one can take the
expected value of the information content, which corresponds to the Shannon entropy
[50, p. 71]:

H(P) = H(x) = Ex∼P [I(x)] (4.9)

=
∑
x

P (x)I(x) (4.10)

=
∑
x

P (x) · −log(P (x)) (4.11)

= −
∑
x

P (x) · log(P (x)) (4.12)

with x := event, P (x) := probability of x, I(x) := self-information of x

The Kullback-Leibler divergence (KL divergence) calculates how different two
separate probability distributions P (x) and Q(x) are over the same event x [50, p.
72] [61]:

DKL(P ||Q) = Ex∼P [log(
P (x)

Q(x)
)] (4.13)

=
∑
x

P (x) · log(P (x)

Q(x)
) (4.14)

with x := event, P (x) := probability P of x, Q(x) := probability Q of x

Using supervised learning for neural networks, one has the calculated output
values of the network and the target values which have to be compared. Cross-entropy
uses the KL divergence and Shannon entropy together to calculate the dissimilarity

24

Artificial Neural Networks

of the output values and the target values in consideration of the information content
[50, p. 73]:

H(P,Q) = H(P) +DKL(P ||Q) (4.15)

= −
∑
x

P (x) · log(P (x)) +
∑
x

P (x) · log(P (x)

Q(x)
) (4.16)

=
∑
x

−P (x) · log(P (x)) + P (x)log(P (x))− P (x)log(Q(x)) (4.17)

= −
∑
x

P (x)log(Q(x)) (4.18)

withP := target probability distribution,Q := predicted probability distribution,
x := event

In the case of neural networks, Q(x) is the activation level of the neuron at the
time of the event x.

Related to a classification problem, where only a single class can be true at a time,
P (x) is only 1 if x is the correct class and for all other cases P (x) is 0. Due to the
multiplication with 0 for the neuron with target value 0, the loss can be only calculated
for the neuron with target value 1. For that reason, a simplified implementation of
the cross-entropy loss can be chosen: the binary cross-entropy. However, this does
not change cross-entropy formula in general, but is rather a simplification.

Since Softmax returns a probability distribution of the predicted classes, cross-
entropy is a good choice in combination with the Softmax activation function. With
a gradient descent based weight optimization, the gradient of the loss function can
then be used to adjust the weights in such a way that the loss is minimized over time.
As a result, the network learns the patterns and classifies correctly more often.

4.5.2 Backpropagation
Taking a look at a 3-dimensional graph of a simplified possible loss function, one
can see, that it has higher regions and lower regions. The objective is to reach the
minimum of the loss function to minimize the network’s error. In Figure 4.3, one
can see a graphical example of a possible loss function in R3 for two weights. One
popular approach to train a MLP is using the so-called backpropagation. This is a
method based on Rumelhart et al. [62] for calculating the gradient of the loss function
with respect to the weights of the network. That way, weights can be adjusted to find
the minimum of the loss. Since it is only possible to adjust the weights, the actual
image of the loss function space that can be explored is a 2-dimensional contour plot
as shown in Figure 4.3. Here, the colors visualize the depth in 3-dimensional space
where a minimum should be found. The shortest distance between two levels show
the steepest descent in 3-dimensional space.

Since during training it is only possible to adjust the weights, the gradient of the
loss function is calculated with respect to each weight in the neural network. As each

25

Artificial Neural Networks

(a) 3D graphic of a possible loss function
(b) 2D contour plot of the 3D loss func-
tion

Figure 4.3: Visualization of a simplified possible loss function in R3 and its contour plot
with x := weight00, y := weight01, z := loss

neuron of layer k is connected to each of layer k − 1, the gradients of each neuron of
one layer are stored in a vector. The computation of the gradient is described below.
To simplify the explanations, from here on, a neural network without bias neurons is
assumed.

The gradient vector is

∇ ~E =
~[

∂E

∂w
(k)
0j

, ... ,
∂E

∂w
(k)
(n−1)j

]
(4.19)

with E := Loss,
n := number of neurons in layer k,
w

(k)
ij := weight between neuron i of the current layer and neuron j of the previous

layer.

Since E = L(P, f(a(k))), with L defined as the loss function, f(a(k)) defined as
the activation levels of all neurons of the output layer k
and f(a

(k)
i) = f(

∑n(k−1)−1
j=0 h

(k−1)
j · w(k)

ij) as the activation level of neuron i of layer
k, the chain rule can be applied twice to get the following term [62]:

∂E

∂w
(k)
ij

=
∂E

∂f(a
(k)
i)

· ∂f(a
(k)
i)

∂w
(k)
ij

(4.20)

=
∂E

∂f(a
(k)
i)

· ∂f(a
(k)
i)

a
(k)
i

· ∂a
(k)
i

∂w
(k)
ij

(4.21)

Let δ(k)i be defined as δ(k)i := ∂E

∂f(a
(k)
i)

· ∂f(a
(k)
i)

a
(k)
i

.

26

Artificial Neural Networks

For calculating δ
(k)
i it is necessary to take into account that the MLP can have one

or multiple hidden layers. In this case, neurons of the inner layers contribute to the
final output indirectly because their activations pass through multiple intermediate
layers before reaching the output layer. This indirect impact means that when calcu-
lating the gradient of the loss with respect to the connections (weights and biases) of
these neurons, one must consider how changes in their parameters affect the output
through all the intermediate steps. Therefore, the computation of these gradients has
to be divided into two conditions: k is an output layer and k is a hidden layer. While
the calculation of δ(k)i for the output layer is clearly evident, the computation for a
hidden layer is more complicated due to the indirect impact and is shown below:

Let k be the hidden layer, then

δki =
∂E

∂f(aki)
· ∂f(a

(k)
i)

a
(k)
i

(4.22)

Since E is the loss and in a fully-connected MLP each neuron of layer k is connected
with each neuron of the next layer k + 1, the following function holds for E of the
hidden layer k with the output layer k+1:

Let Lj(Pj, f(a
(k+1)
j)) be defined as the loss of neuron j of the output layer k + 1.

E =
n(k+1)−1∑

j=0

L(Pj, f(a
(k+1)
j)) (4.23)

Therefore applies:

∂E

∂f(a
(k)
i)

=
n(k+1)−1∑

j=0

∂L(Pj, f(a
(k+1)
j))

∂f(a
(k)
i)

(4.24)

It is known that

f(a
(k+1)
j) =

n(k)−1∑
t=0

f(a
(k)
t) · wk+1

jt (4.25)

with

f(a
(k)
t) =

n(k−1)−1∑
l=0

f(a
(k−1)
l) · w(k)

tl (4.26)

From this results:

∂E

∂f(a
(k)
i)

=
n(k+1)−1∑

j=0

∂L(Pj, f(a
(k+1)
j))

∂a
(k+1)
j

·
∂a

(k+1)
j

∂f(a
(k)
i)

(4.27)

=
n(k+1)−1∑

j=0

∂L(Pj, f(a
(k+1)
j))

∂f(a
(k+1)
j)

·
∂f(a

(k+1)
j)

∂a
(k+1)
j

·
∂a

(k+1)
j

∂f(a
(k)
i)

(4.28)

27

Artificial Neural Networks

from 4.25 follows:

∂E

∂f(a
(k)
i)

=
n(k+1)−1∑

j=0

∂L(Pj, f(a
(k+1)
j))

∂f(a
(k+1)
j)

·
∂f(a

(k+1)
j)

∂a
(k+1)
j︸ ︷︷ ︸

δ
(k+1)
j

·w(k)
ji (4.29)

With the definition of δki in (4.22), δki for the hidden layer k is defined as

δki =

(n(k+1)−1∑
j=0

w
(k)
ji · δ(k+1)

j

)
· ∂f(a

(k)
i)

a
(k)
i

Therefore the following function is valid for δ:

δ
(k)
i =

∂L(Pi,f(a

(k)
i))

∂f(a
(k)
i)

· ∂f(a
(k)
i)

a
(k)
i

if k is an output layer,

(
∑n(k+1)−1

j=0 w
(k)
ji · δ(k+1)

j) · ∂f(a
(k)
i)

a
(k)
i

if k is an hidden layer

 (4.30)

And thus the gradient vector is:

∇E =

~[
δ
(k)
0 · ∂a

(k)
0

∂w
(k)
0j

, ... , δ
(k)
n−1 ·

∂a
(k)
n−1

∂w
(k)
(n−1)j

]
(4.31)

This also shows clearly where the name backpropagation comes from, namely
from the back propagation of the error from the last to the first layer.

This gradient is used in several optimization algorithms to modify the weights.

4.5.3 Optimization Algorithm
Assuming the previous use of backpropagation, the optimization algorithm is used to
change the weights based on the gradient to find the minimum of the loss function. The
gradient indicates the direction for the steepest descent. One of the most popular op-
timization algorithm is the gradient descent. The algorithm itself is seen in Figure 4.4.

With gradient descent, each updated weight is calculated as follows:

w
(k,new)
ij = w

(k,old)
ij −∆w

(k)
ij (4.32)

with

∆w
(k)
ij = η · δ(k)i · ∂a

(k)
i

∂w
(k)
ij

(4.33)

28

Artificial Neural Networks

η is the learning rate; it is controlling how much the weight is adjusted with each
update and has a significant impact on the learning process.

1) initialize the network with weights (usually randomized)

2a) forward propagation

2b) calculation of the loss

2c) backpropagation

2d) update the weights according to the optimization algorithm

3) repeat all steps from 2 until a termination criterion fulfills or the perfor-
mance of the network is satisfactory

Figure 4.4: Algorithm of the neural network training, using gradient descent.

The algorithm shown in Figure 4.4 describes a weight update after each forward
propagation. This type of training is called incremental training [57]. The gradient
descent algorithm of this type of training is called stochastic gradient descent (SGD).
One advantage of it is, that it performs fast and frequent updates, and therefore,
features a fast learning process. However, this also leads to the fact that the weights
vary largely due to the large amount of updates and the loss function fluctuates. On
the one hand, this ensures that a local minimum can partly be left again, but on the
other hand, the SGD might overshoot the minima repeatedly, which makes it difficult
to reach the exact minimum. [63]

Using batch training in general, each weight is updated after a batch [57]. There
are two types of it in the case of gradient descent. The first one is the batch gradient
descent, also referred to as vanilla gradient descent. Using this, the weights are
updated after the whole training data set. For this, the gradients of the whole set are
summed up for a single update. [63]

This also means that if the data sets are too large, the memory may not be suf-
ficient and thus vanilla gradient descent is not feasible due to memory limitations.
Another disadvantage is that this algorithm is slow, since the whole dataset has to be
seen before the update [63]. On the other hand, is the learning behavior more stable
than using SGD [63], since the weight update is based on all training data and not
after seeing a single input.

The other type of batch training in the case of gradient descent is the mini-batch
gradient descent. Instead of updating the weights after the whole epoch, mini-batch
gradient descent updates the weights after a smaller batch of n training samples [63].
Therefore, it can be seen as a combination of SGD and vanilla gradient descent, with
the best benefits of both. Due to the amount of information that can be processed
at once, the learning behavior is more stable than using SGD. Also, the memory
problem can be avoided, since a smaller batch size requires less memory at a time.
Another factor is that the batch size is also an additional hyperparameter that can be

29

Artificial Neural Networks

adjusted. The network can be trained fast and target-oriented. Furthermore, since
each input is independent of each other, it can easily be parallelized for faster compu-
tations. Because of all these arguments, this type of gradient descent is considered
as a popular optimization method.

There exists multiple other algorithms that are an optimization or extension of
the gradient descent. One such algorithm is Adaptive Moment Estimation (Adam)
[64], which is used in the implemented MLP for solving the problem of this thesis.
Adam is a combination of a decaying learning rate that can help to avoid overfitting
and momentum based weight updates. In Adam, each connection has a 1st and 2nd
momentum that is calculated with each weight update. This is used to improve the
learning process even further when neurons sometimes have an output value of 0,
their weights are still trained. Additionally, if an input feature contains noise and
the noise leads to the fact that the neuron fires, even if it usually should not, the
momentum can hold against the wrong weight update. Thus, the momentum can
help to stabilize the learning process.

30

Optimization of Λ Signal/Background Ratio

Chapter 5

Optimization of Λ Signal/Background
Ratio

The goal of the present work is to optimize the Λ signal/background ratio for CBM,
using a neural network. The signal/background ratio indicates the ratio of correctly
reconstructed particles to those particles which are incorrectly reconstructed or in-
correctly classified. The incorrectly reconstructed particles as well as the incorrectly
classified particles are background. The first one is the combinatorial background,
reconstructed particles that do not exist. The second one are particles which exists
but were incorrect classified.

To enhance the physics analysis quality of the CBM experiment, minimizing the
combinatorial background, referred to as ghosts, is essential, as these reconstructed
particles do not exist. Consequently, these particles offer no additional physical in-
sights and only serve as confounding variables when assessing the event’s outcomes.
In addition, however, it is important to ensure that the number of reconstructed real
Λ particles does not decrease significantly.

The deep neural network for this approach is created using the ANN4FLES pack-
age [16, p.161], which is a neural network package developed in C++ for applications
in the FLES package. The ANN4FLES package is developed within the group of
Prof. Kisel at Frankfurt Institute for Advanced Studies (FIAS). This group consists
of a team of students and PhD students, supervised by Prof. Kisel, including Gianna
Zischka. The package offers the flexibility to construct a wide variety of neural
network architectures. It allows selecting from different types of networks, layer
counts, neuron quantities, activation and optimization algorithms, as well as loss
functions, among other options.

5.1 Adjusting Specific Cuts for the Network Approach
In its reconstruction process, the KFParticleFinder class employs various preset
cut-off values, commonly referred to as ”cuts.” These statistical cuts serve as thresh-
old parameters for particle selection, including values like χ2

prim, which denotes the
χ2 relationship of the particle to the primary vertex.

In a χ2-test, observed data points are evaluated against a predefined theoretical

31

Optimization of Λ Signal/Background Ratio

framework or hypothesis. When the calculated statistic for a specific value exceeds a
set threshold, it becomes improbable that the value aligns with the given model or
hypothesis.

In this work, the focus is on three χ2-cuts that are applied in CBM: χ2
geo, χ2

prim

and χ2
topo. The first one is used to create mother particle candidates. Whenever an

intersection of particle tracks is found that could indicate a possible secondary vertex,
χ2
geo is used to test if it is likely that the given tracks build a decay vertex. In other

words, it is the fit of a daughter track to another daughter track. The second cut, χ2
prim,

is used to determine if a track is pointing to the primary vertex, the primary collision
point. This test helps to identify particles that come directly from the collision and
are not a result of decayed particles that decayed after flying away from the vertex.
The last cut, χ2

topo = χ2
geo + χ2

prim is testing the whole particle topology. Thus, if
the particle with its reconstruction is likely to be real. Additionally, the l/∆l cut is
focused in this work, since the normalized decay length can help to identify Λ.

For the presented approach, three cuts that are usually used to decide whether a
particle is a Λ or not were loosened. The default cuts from the CBM experiment are
shown in Table 5.1.

Cut value Cut parameter Cut description
χ2
prim > 18.42 fCuts2D[0] χ2 of the extrapolated track to the primary vertex

χ2
geo < 3 fCuts2D[1] χ2 of the track to the second daughter track

l/∆l > 3 fCuts2D[2] decay length normalized on the error

Table 5.1: Default cut values of the KF Particle Finder in CBM

The looser cuts provide space for the neural network to operate more freely. If
the cuts are too tight, it is possible that some Λ particles are already sorted out by
the KF Particle Finder cuts before the neural network is able to classify the particles.
The looser cuts can be found in Table 5.2. In case of the CBM experiment, the χ2

prim

cut threshold is overwritten using an external function. For this purpose, the function
SetPrimaryProbCut is used, which is located in the class CBMKFParticleFinder.
The function uses its own calculations to obtain a threshold for the χ2

prim cut specifi-
cally for the CBM experiment. The parameter for this function was set from 0.0001
to 0.1 for this work, such that the cut was changed from 18.42 to 4.605.

Cut value Cut parameter Cut description
χ2
prim > 4.605 fCuts2D[0] χ2 of the extrapolated track to the primary vertex

χ2
geo < 6 fCuts2D[1] χ2 of the track to the second daughter track

l/∆l > 2 fCuts2D[2] decay length normalized on the error

Table 5.2: Looser cut values of the KF Particle Finder in CBM

The parameters of the Λ particles which were compared with the cuts as well as
other parameters of the particles were extracted and used as input parameters for the

32

Optimization of Λ Signal/Background Ratio

network. Table 5.3 shows all the parameters used, which were then applied to train
the network with varying configurations. The selected parameters are chosen, since
they are usually used to identify the particles by rejecting falsely reconstructed ones.
Furthermore, similar work [65] has already shown that machine learning approaches
based on χ2

geo, χ2
topo and l/∆l, including the parameters of daughter particles, are

promising. Since Λ is reconstructed based on its daughter particles, these contain
cut information about the quality of the reconstructed Λ. Additionally, the mass and
transverse momentum are also considered as important properties of a particle, why
the decision was made to include these parameters in this work as well.

5.2 Extraction of the Training Data
A struct containing the necessary parameters was set up for data extraction in
the class KFParticle. This allows for the immediate storage and access of val-
ues in the respective particles, all of which are kept in the fParticle array of the
KFParticleTopoReconstructor class. In the case of this thesis, it was done for the
particle Λ. However, it would be also possible to use the same way for the storage
of parameters needed for other particles. Thus, this approach of extracting needed
data for the neural network to improve the signal/background ratio would also be
applicable to other particles. The parameters generated can be seen in Table 5.3
including the functions GetMass() and GetPt() which were utilized to obtain the
mass and transverse momentum of Λ, due to the ease of information access.

Parameter Parameter Description
is_signal_ann Boolean if the neural network classified the recon-

structed Λ as signal or background
is_signal_mc Boolean if the reconstructed Λ is a real Λ coming from

the MC simulation or not
chi2geo χ2

geo of the reconstructed Λ

chi2prim χ2
prim of the reconstructed Λ

chi2topo χ2
topo of the reconstructed Λ

ldl l/∆l of the reconstructed Λ

daughterPtPos pT of the positive daughter of the reconstructed Λ

daughterPtNeg pT of the negative daughter of the reconstructed Λ

daughterChi2PrimPos χ2
prim of the positive daughter of the reconstructed Λ

daughterChi2PrimNeg χ2
prim of the negative daughter of the reconstructed Λ

GetMass() function of the KFParticle class which returns the
mass. Used to get the mass of the reconstructed Λ.

GetPt() function of the KFParticle class which returns the
transverse momentum. Used to get the transverse mo-
mentum of the reconstructed Λ.

Table 5.3: Parameter which were stored for the neural network approach. The last 10 were
used as an input for the neural network.

33

Optimization of Λ Signal/Background Ratio

Most of the required values are stored within the KFParticleFinder class. Within
this class, the FindParticles method is invoked to perform the reconstruction of
short-lived particles. This method internally calls Find2DaughterDecay for recon-
structing 2-daughter channels. This method is used in this approach to store the χ2

prim

values of the daughters. Within Find2DaughterDecay the method ConstructV0 is
called. It combines two particle candidates into a 2-daughter mother candidate, ap-
plying the necessary cuts and is used to store the remaining relevant parameters for
this task.

To be able to store the χ2
prim values of the daughters, two SIMD vectors are

initialized in the KFParticleSIMD class: cutPosDaughters, for χ2
prim of the positive

daughter and cutNegDaughters for χ2
prim of the negative daughter. Inside the method

Find2DaughterDecay the χ2
prim values are stored in the vectors, which can be seen

in Listing 5.1. In this code section, the loop over the SIMD elements is shown,
which recombines the KFParticleSIMD elements. The loop is used to reject created
particles that do not fulfill several criteria for particle creation. Particles rejected are
flagged as not active and will therefore be skipped (line 2). In general, information
about non-rejected particles is stored in buffer SIMD vectors that will be further
processed in the ConstructV0 function if the buffer is full. Thus, further calculations
on SIMD objects are possible, but some particles are already removed to reduce the
number of particles that need further processing. In this loop, the own SIMD vectors
are filled with the χ2

prim values of the daughters (line 5-6), ensuring that they can
be used when further processed in ConstructV0 and later stages. Otherwise, this
information would have been lost.

1 for (int iV = 0; iV < float_vLen; iV@++) {

2 if (!(active[iPDGPos][iV])) continue;

3

4 @// included code

5 mother.cutPosDaughters[nBufEntry] = chi2PrimPos[iV];

6 mother.cutNegDaughters[nBufEntry] = chi2PrimNeg[iV];

7 @// end of the included code

8

9 idPosDaughters[nBufEntry] = iTrP + iV;

10 idNegDaughters[nBufEntry] = negInd[iV];

11

12 daughterPosPDG[nBufEntry] = trackPdgPos[iPDGPos][iV];

13 daughterNegPDG[nBufEntry] = trackPdgNeg[iV];

14

Listing 5.1: Storing of daughter χ2
prim values in the KFParticleSIMD object of the

mother particle

In ConstructV0, objects from the KFParticleSIMD class are utilized, each con-
taining SIMD vectors for attributes like mass and transverse momentum. There-
fore, the required information for Λ must be written into SIMD vectors, which are
initially filled with zeros. These vectors are: chi2geo_values, chi2prim_values,
chi2topo_values, ldl_values. This is carried out to enable the storage of values
within the KFParticle object’s struct at a later stage.

34

Optimization of Λ Signal/Background Ratio

First, the χ2
geo values are extracted. A unique aspect of the χ2 values is that

they are overwritten multiple times throughout the code. Therefore, it is important
to ensure that they are extracted and stored at the correct location. The χ2

geo value
for the KFParticleSIMD object mother is calculated using the Construct method,
which constructs a KFParticleSIMD object of short-lived particles from a set of
daughters. This means that all parameters of mother are initialized using this method.
Therefore, chi2geo_values is filled directly after this function call, which can be seen
in Listing 5.2. Since the χ2 value of an KFParticleSIMD object is stored normalized
with the number of degrees of freedom (NDF), it must be divided by NDF.

1 @// chi2 is calculated by this method

2 mother.Construct(vDaughtersPointer, 2, 0);

3

4 @// Included code line: Saving the values of chi2geo for later storage in

↪→ the structure of the KFParticle object.

5 chi2geo_values = mother.GetChi2() / simd_cast<float_v>(mother.GetNDF());

6

7 @// code of the method ConstructV0 where the cut chi2geo is used

8 float_m saveParticle(simd_cast<float_m>(int_v@::IndexesFromZero() < int(

↪→ NTracks)));

9 float_v chi2Cut = cuts[1]; @// chi2geo

10 float_v ldlCut = cuts[2];

11 if (!(simd_cast<float_m>(abs(mother.PDG()) @== 421 @|| abs(mother.PDG())

↪→ @== 426 @|| abs(mother.PDG()) @== 420)).isEmpty()) {

12 chi2Cut(simd_cast<float_m>(abs(mother.PDG()) @== 421 @|| abs(mother.PDG()

↪→) @== 426 @|| abs(mother.PDG()) @== 420)) = fCutsCharm[0];

13 ldlCut(simd_cast<float_m>(abs(mother.PDG()) @== 421 @|| abs(mother.PDG())

↪→ @== 426 @|| abs(mother.PDG()) @== 420)) = -1; @//fCutsCharm[1];

14 }

15

16 @// comparison between the values of chi2geo and the cut

17 saveParticle @&= (mother.Chi2() / simd_cast<float_v>(mother.NDF()) <

↪→ chi2Cut);

18 saveParticle @&= KFPMath@::Finite(mother.GetChi2());

19 saveParticle @&= (mother.GetChi2() > 0.0f);

20 saveParticle @&= (mother.GetChi2() @== mother.GetChi2());

21

Listing 5.2: Code section of saving the χ2
geo values in the method ConstructV0 in the

class KFParticleFinder

The code section where the values of ldl_values, chi2topo_values and
chi2prim_values are filled can be seen in Listing 5.3 and is located further down
in the ConstructV0 method after chi2geo_values has been filled. In line 6, the χ2

value is overwritten with the value of χ2
topo using the method SetProductionVertex.

In this function call, χ2
prim is calculated and added to the χ2 class member variable,

so that χ2
topo = χ2

geo + χ2
prim is finally stored as the χ2 value of the class object. The

decay length is given by using the function GetDecayLength, which determines the
decay length of the particle and its error in the laboratory system and gets both as an
output parameter. Since ldlMin is used for the comparison with the l/∆l cut, ldlMin
is used to fill the SIMD vector ldl_values. Since both values, χ2

topo and χ2
prim, are

already stored, it is possible to calculate χ2
prim by χ2

prim = χ2
topo−χ2

geo which is done

35

Optimization of Λ Signal/Background Ratio

in line 15.

1 #ifdef NonhomogeneousField

2 KFParticleSIMD motherTopo;

3 ldlMin = 1.e8f;

4 for (int iP = 0; iP < fNPV; iP@++) {

5 motherTopo = mother;

6 motherTopo.SetProductionVertex(PrimVtx[iP]);

7 motherTopo.GetDecayLength(l[iP], dl[iP]);

8 float_v ldl = (l[iP] / dl[iP]);

9 ldlMin((ldl < ldlMin) @&& saveParticle) = ldl;

10 }

11

12 @// included code

13 ldl_values = ldlMin; @//set ldl_values

14 chi2topo_values = motherTopo.GetChi2() / simd_cast<float_v>(motherTopo.

↪→ GetNDF()); @// set chi2topo_values

15 chi2prim_values = chi2topo_values - chi2geo_values; @// set

↪→ chi2prim_values

16 @// end of the included code

17 #endif

18

19

20 saveParticle @&= ((float_m(!isPrimary) @&& ldlMin > ldlCut) @|| float_m(

↪→ isPrimary)); @// ldl cut is used here

21

Listing 5.3: Code Section of saving the l/∆l, χ2
topo and χ2

prim values in the method
ConstructV0 in the class KFParticleFinder

Since mother is a KFParticleSIMD object, iteration is performed through the
corresponding SIMD vector, using NTracks (the number of SIMD vector elements) as
the loop limit. If the particle has not fulfilled the cut results, then saveParticle[iv]

is set to false and the new iteration begins. The saveParticle serves as a mask
that is logically ANDed with the cuts to determine whether the particle should be
reconstructed. Using the GetKFParticle function, the element of the index iv will
be copied to the KFParticle object mother_temp. The Array Particles in the line
after the call of GetKFPaticle includes all reconstructed particles. The ID of each
particle is the index of the corresponding particle inside the array Particles. Since
the particles are written into the array Particles further down within the for-loop,
the size of the array is also the ID of the particle. This can be seen in Listing 5.4.

1 for (int iv = 0; iv < NTracks; iv@++) {

2 @// NTracks = Number of SIMD vector elements

3 if (!saveParticle[iv])

4 continue;

5

6 mother.GetKFParticle(mother_temp, iv);

7 int motherId = Particles.size();

8 mother_temp.SetId(Particles.size());

9

Listing 5.4: Extraction of KFParticle object mother_temp from KFParticleSIMD object
mother

36

Optimization of Λ Signal/Background Ratio

Further down, before the array Particles is filled with the new particle, the in-
formation for the struct is set, which can be seen in Listing 5.5. First the PDG code is
checked, if the current object is a particle object of Λ, as this is the interested particle
for this task. Since mother_temp is a KFParticle object and no KFParticleSIMD

object the element with the index iv of the SIMD vectors chi2geo_vlaues,
chi2prim_values, chi2topo_values and ldl_values as well as of the arrays
cutPosDaughters and cutNegDaughters of the mother object, is saved in the cor-
responding struct parameter. For the transverse momentum of the daughters, the
daughter’s KFParticle object has to be created first. Since the daughter IDs are saved
inside each KFParticle object, the ID is extracted from mother_temp. With this, the
daughters can be extracted from the Particles array using the ID and saved as an
KFParticle object. This is done for the positive daughter as well as for the negative
daughter, seen in line 13 and 16. Applying the function GetPt to the corresponding
object the transverse momentum of the daughter is extracted and saved in the struct
of mother_temp, seen in line 14 and 17.

1 @// included code

2 @// if reconstructed lambda

3 if (mother_temp.GetPDG() @== 3122) {

4

5 mother_temp.data.chi2geo = chi2geo_values[iv];

6 mother_temp.data.chi2prim = chi2prim_values[iv]; @// chi2topo - chi2geo

↪→ = chi2prim

7 mother_temp.data.chi2topo = chi2topo_values[iv];

8 mother_temp.data.ldl = ldl_values[iv];

9 mother_temp.data.daughterChi2PrimPos = mother.cutPosDaughters[iv];

10 mother_temp.data.daughterChi2PrimNeg = mother.cutNegDaughters[iv];

11

12 @// extract daughter information

13 KFParticle &daughParticle0 = Particles[mother_temp.DaughterIds()[0]];

14 mother_temp.data.daughterPtNeg = daughParticle0.GetPt();

15

16 KFParticle &daughParticle1 = Particles[mother_temp.DaughterIds()[1]];

17 mother_temp.data.daughterPtPos = daughParticle1.GetPt();

18

Listing 5.5: Included code inside the for-loop of Listing 5.4 where the information of
the struct is set

After this, the parameters of the struct chi2geo, chi2prim, chi2topo, ldl,

daughterChi2PrimPos and daughterChi2PrimNeg are limited to the interval
[−10, 000,+10, 000]. Subsequently, they are normalized by 10,000, since large fluc-
tuations can have a severe impact on the learning performance of the neural network,
especially when Softmax activation function is applied in the output layer. Softmax
activation takes the weighted sum as an input and uses the exponential function to
proceed with these values. If the exponents are exploding due to the extreme values,
the model is numerically instable. To avoid this problem, a limit of ±10, 000 is set
and values are then normalized between -1 and +1.

The input of the neural network in the KF Particle Finder package, which is also
included in the method ConstructV0 is set directly after the parameters have been

37

Optimization of Λ Signal/Background Ratio

normalized. All parameters are stored in a float-vector inputs_ann. The mass and
transverse momentum parameters are directly obtained from the particle through
the GetMass and GetPt methods. These methods return the mass and transverse
momentum, respectively, if both, the value and its error, are well-defined.

For training, the data is extracted at the end of the method MatchParticles of
the class KFTopoPerformance. This method matches the reconstructed particles with
the created particles of the MC simulation and stores this bidirectional connection
by storing the IDs into arrays. Inside the function first, the matches are found. If a
match is found, the type of the reconstructed particle and the matched MC particle is
checked. Λ is treated as a normal decay within the MatchParticles method. Within
this code section, the reconstructed Λ matches either with a Monte-Carlo generated
Λ (signal) or with another MC generated particle (e.g. Ks) (physical background).
In the first case, for the parameter is_signal_mc within the struct a 1 is assigned for
true, in the second a 0 for false, which is seen in Listing 5.6. In the case that no match
was found (ghosts/combinatorial background) the default value of the parameter
remains, which is set to -1.

1 @// rPart: reconstructed particle, mmPart: Monte-Carlo particle

2 @// if PDG-Code and number of daughters of both is the same

3 if (mmPart.GetPDG() @== rPart.GetPDG() @&& mmPart.NDaughters() @== rPart.

↪→ NDaughters()) {

4 MCtoRParticleId[mmId].ids.push_back(iRP);

5 RtoMCParticleId[iRP].ids.push_back(mmId);

6

7 @// included code line

8 @// Assignment of the particle to signal

9 const_cast<KFParticle&>(rPart).data.is_signal_mc = 1;

10 } else {

11 MCtoRParticleId[mmId].idsMI.push_back(iRP);

12 RtoMCParticleId[iRP].idsMI.push_back(mmId);

13

14 @// included code line

15 @// Assignment of the particle to background

16 const_cast<KFParticle&>(rPart).data.is_signal_mc = 0;

17 }

18

Listing 5.6: Assignment of the matched particles to signal or physical background. In
the case of signal the struct is_signal_mc is set to 1, in the case of physical background
to 0. If the particles weren’t matched before (combinatorial background) is_signal_mc
retains the default value which is set to -1.

Directly after the tagging of signal and physical background particles, the data
set is extracted at the end of MatchParticles as it can be seen in Listing 5.7. The
mass and transverse momentum parameters are also directly obtained from the re-
constructed particle through the GetMass and GetPt methods.

After the data set was extracted, a Python script was used to create a balanced
dataset that consists of 50% signal and 50% background particles.

38

Optimization of Λ Signal/Background Ratio

1 @// included code

2 std@::ofstream file_input_ANN4FLES;

3 file_input_ANN4FLES.open(”ANN4FLES_input.txt”, std@::ios@::app);

4

5

6 for (const KFParticle part : fTopoReconstructor->GetParticles()) {

7 if (part.GetPDG() @!= 3122) continue; @// incl. ghosts (is_signal_mc =

↪→ -1)

8

9 if (part.data.is_signal_mc @== -1)

10 const_cast<KFParticle&>(part).data.is_signal_mc = 0; @// for the

↪→ neural network, ghosts are just concidered as background)

11

12 file_input_ANN4FLES << part.data.is_signal_mc

13 << ”;” << part.GetMass()

14 << ”;” << part.GetPt()

15 << ”;” << part.data.chi2geo

16 << ”;” << part.data.chi2prim

17 << ”;” << part.data.chi2topo

18 << ”;” << part.data.ldl

19 << ”;” << part.data.daughterPtPos

20 << ”;” << part.data.daughterPtNeg

21 << ”;” << part.data.daughterChi2PrimPos

22 << ”;” << part.data.daughterChi2PrimNeg

23 << std@::endl;

24 }

25

26 file_input_ANN4FLES.close();

27

Listing 5.7: Extracting the data for training and validation of the network in the method
MatchParticles of the class KFTopoPerformance

5.3 Neural Network Model
The architecture created with ANN4FLES features an input layer, four hidden layers,
and an output layer. Since a neural network with more than two hidden layers is
usually considered deep, the presented approach can be considered as deep learning.
The input layer has 10 neurons, corresponding to the number of parameters. Each
of the four hidden layers contains 64 neurons and utilizes Leaky Rectified Linear
Unit (Leaky ReLU) as the activation function. The output layer comprises 2 neurons
and employs Softmax for activation. As the loss function, binary cross-entropy loss
is used and Adam was chosen as weight optimizer. The learning rate α is set to 0.001,
β1 is set to 0.9, β2 to 0.999, and the ε value to 10−8.

The definition for Leaky ReLU is as follows:

LeakyReLU := f(a
(k)
i) =

{
s · a(k)i , if a

(k)
i ≤ 0

a
(k)
i , if a

(k)
i > 0

}
(5.1)

with a
(k)
i := input of neuron i of layer k and negative slope s ∈ R.

39

Optimization of Λ Signal/Background Ratio

The parameter s is a constant that is typically set to a small value. In this case, s
was set to 0.1. The problem of differentiability exists at a(k)i = 0, thus the function
is not differentiable at all points. Since in the case of a(k)i = 0, the neuron has no
influence on the subsequent layers, one solution would be to set the gradient manually
to 0 and consequently not to carry out a weight update for this neuron. It is therefore
possible to find a suitable gradient for this special case despite the lack of differentia-
bility at a(k)i = 0 by setting it to 0. In Figure 5.1, Leaky ReLU is seen with s set to 0.1.

−6 −4 −2 2 4 6

−2

2

a
(k)
i

f(a(k)i)
Leaky ReLU

Figure 5.1: Leaky ReLU function with s = 0.1 and a
(k)
i as the input of neuron i of layer k

and f(a
(k)
i) the output of Leaky ReLU

In the output layer Softmax is used, since Softmax can be interpreted as a probabil-
ity distribution of the predicted classes, in this case signal and background. Softmax
is applied to the whole layer, since all input values of each neuron are needed. Softmax
is defined as follows:

Softmax := f(a
(k)
i) =

exp(a(k)i)∑n−1
j=0 exp(a(k)j)

(5.2)

with a
(k)
i := input of neuron i of the current layer k and∑n−1

j=0 exp(a(k)j) as the sum from j = 0 to n− 1 of the exponential of neuron inputs
a
(k)
j of layer k. n is the number of the neurons of layer k.

In the neural network being used, n is equal to 2, as two output neurons are used.
The corresponding graph of Softmax can be seen in Figure 5.2.

For the training and validation of the neural network, a dataset of 787,000 Λ
particles was used. The dataset consists of 50:50 signal and background (physical
and combinatorial) Λ particles. It was then split by 80:20 ratio for training and
validation respectively. Thus, the network has been trained with 630,000 Λ particles
and validated by using 157,000 particles. The training process was repeated over 30
epochs, using a batch size of 100. With the given settings, the network achieved a
raw classification performance of almost 99% accuracy on the validation set, which
can be seen in Figure 5.3.

40

Optimization of Λ Signal/Background Ratio

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

a
(k)
1 − a

(k)
2

f
(a

(k
)

i
)

Softmax Function for n = 2

f(a
(k)
0)

f(a
(k)
1)

Figure 5.2: Softmax function for n = 2, a(k)i , i ∈ {0, 1} as the input of neuron i of layer k
and f(a

(k)
i) as the output of Softmax

0 5 10 15 20 25 30
Epoch

95

96

97

98

99

100

Ac
cu

ra
cy

 %

ANN4FLES Lambda Classification Performance
Training
Validation

Figure 5.3: Accuracy values of training and validation, using ANN4FLES for Λ signal/back-
ground classification. The accuracy values reach up to almost 99% and the training curve is
stable.

41

Optimization of Λ Signal/Background Ratio

5.4 Implementation of ANN4FLES in the KF Particle
Finder Package

Within the constructor of the KFParticleFinder class, the neural network is initial-
ized. The network topology of 10 input neurons, 4 hidden layers with 64 neurons
each and 2 output neurons is set and the weight file with the pre-trained network
weights is loaded. This can be seen in Listing 5.8.

1 @// vector with the layer sizes

2 std@::vector<int> topology = {10, 64, 64, 64, 64, 2};

3 net = new Network();

4 net->InitializeANN(topology, true);

5 @// pre-trained weights

6 std@::string weight_path = ”weights_ann4fles_sb.nnw”;

7 net->ImportNeuronWeights(weight_path);

8

Listing 5.8: Initialization of ANN4FLES in the constructor of KFParticleFinder

The neural network is included in the ConstructV0 method within the
KFParticleFinder class. It is located directly after the input parameters for the
neural network has been set (see also Listing 5.9). The InferOutput function of
ANN4FLES takes the current input vector as an input parameter and then applies
the feed-forward through the network. Since Softmax is used in the output layer,
a probability distribution is the result. However, InferOutput does not return this
probability, but the Arguments of the Maxima (Arg Max) of the neuron outputs and,
thus, it returns the predicted class. In this case, it returns 1 if the particle is classified
as signal, 0 otherwise. For later analysis, this result is stored in the struct parameter
is_signal_ann of the particle.

1 @// included code

2 @// set input values for ANN

3 std@::vector<float> inputs_ann = { mother_temp.GetMass(),

4 mother_temp.GetPt(),

5 mother_temp.data.chi2geo,

6 mother_temp.data.chi2prim

7 mother_temp.data.chi2topo,

8 mother_temp.data.ldl,

9 mother_temp.data.daughterPtPos,

10 mother_temp.data.daughterPtNeg,

11 mother_temp.data.daughterChi2PrimPos,

12 mother_temp.data.daughterChi2PrimNeg };

13

14 @// infer output from neural network and set result into the struct

15 int out = net->InferOutput(inputs_ann);

16 mother_temp.data.is_signal_ann = bool(out);

17 }

18 @// end of included code

19

20 Particles.push_back(mother_temp);

21

Listing 5.9: The insertion of the neural network in the ConstructV0 method to classify
the Λ particles.

42

Optimization of Λ Signal/Background Ratio

5.5 Results
For the test phase of the deep neural network, ANN4FLES is implemented in the
KF Particle Finder package and compared to the results of the default approach of the
CBM experiment. Here, the performance measurement tools of the KF Particle Finder
are used to evaluate the results. The number of simulated events used for testing is
46,000. The same data set is used for the default approach and the neural network
based approach to compare both results.

Figure 5.4 displays the entire set of reconstructed Λ particles within the mass from
1.06 GeV/c2 to 1.2 GeV/c2. The distribution generated by using the KF Particle Finder
package with the looser cuts in combination with ANN4FLES is shown in red. In
blue, the distribution with the default settings is displayed. The peak of Λ is around
the expected mass of 1.115 GeV/c2, which corresponds to the PDG mass of Λ. Entries
distant from this value are highly likely to be physical or combinatorial background.
The total amount of particles shown in the histogram are 818,055 for the default
approach and 207,215 for the network approach. So, in general, the amount of
reconstructed Λ particles has been reduced by a factor of 3.94. It can be seen that
the neural network approach has a clearer peak in the region of the PDG mass of
Λ, which indicates that the background has been well reduced. On the other hand
it is also shown, that the peak has fewer entries, therefore the number of correctly
reconstructed Λ particles must be studied more closely.

Lambda - All - Default
Entries 2228850
Mean 1.138
Std Dev 0.03111

1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
]2mass [GeV/c

0

10000

20000

30000

40000

50000

en
tr

ie
s

Lambda - All - Default
Entries 2228850
Mean 1.138
Std Dev 0.03111

Lambda - All

Figure 5.4: Histogram of all reconstructed Λ particles consisting of signal,
physical background and ghosts in the mass range from 1.06 GeV/c2 to 1.2
GeV/c2. It presents a comparison between Λ particles reconstructed using the
default settings of the KF Particle Finder package (blue) and those reconstructed
using the looser cuts within the KF Particle Finder package in combination with
ANN4FLES (red).

In Figure 5.5, however, it can be seen that in the region of the peak, the number of
correctly reconstructed Λ particles did not decrease significantly. The total amount of
true positives are 182,364 correct reconstructed Λ particles for the default approach
and 179,891 for the neural network approach in the mass range from 1.1 GeV/c2 to
1.135 GeV/c2. Hence, the approach with looser cuts in combination with ANN4FLES
reconstructs a negligible factor of 1.36% less true Λ particles.

43

Optimization of Λ Signal/Background Ratio

Lambda - TP - Default
Entries 187101
Mean 1.116
Std Dev 0.002267

1.1 1.105 1.11 1.115 1.12 1.125 1.13 1.135
]2mass [GeV/c

0

10000

20000

30000

40000

50000

en
tr

ie
s

Lambda - TP - Default
Entries 187101
Mean 1.116
Std Dev 0.002267

Lambda - True Positives

Figure 5.5: Histogram of the true positives of all reconstructed Λ particles in
the mass range from 1.1 GeV/c2 to 1.135 GeV/c2 using the default settings of
KF Particle Finder package (blue) in comparison to those reconstructed using
the looser cuts within the KF Particle Finder package in combination with
ANN4FLES (red).

The previous assumption that the background has been reduced by using the deep
neural network in combination with loose cuts is confirmed by a look at Figure 5.6.
Here, a reduction of the physical background is clearly visible. The peak around 1.08
GeV/c2 is reduced significantly. Moreover, the background in the region from 1.14
GeV/c2 upwards was almost completely removed. Around the PDG mass of Λ, the
neural network approach also had difficulties in reducing the physical background, but
a reduction compared to the default approach is also visible. In total, in the range from
1.06 GeV/c2 to 1.2 GeV/c2, the physical background of the default approach consists
of 34,746 falsely classified Λ particles. In case of the approach with ANN4FLES
the absolute number of falsely classified Λ particles is 8,314, a factor of 4.18 less
physical background.

Lambda - Phys. Backgr. - Default

Entries 139240
Mean 1.146
Std Dev 0.03253

1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
]2mass [GeV/c

0

50

100

150

200

250

300

350

400

en
tr

ie
s

Lambda - Phys. Backgr. - Default

Entries 139240
Mean 1.146
Std Dev 0.03253

Lambda - Physical Background

Figure 5.6: Histogram of the physical background of all reconstructed Λ parti-
cles in the mass range from 1.06 GeV/c2 to 1.2 GeV/c2 using the default settings
of KF Particle Finder package (blue) in comparison to those reconstructed us-
ing the looser cuts within the KF Particle Finder package in combination with
ANN4FLES (red).

44

Optimization of Λ Signal/Background Ratio

A highly significant reduction of the background can be seen in the combinatorial
background (ghosts) (Figure 5.7). A reduction of this is of particular interest. Unlike
physical background, which comprises genuine particles, ghosts are irrelevant for
physical analysis as they represent non-existent, reconstructed particles. Around the
PDG mass of Λ a small increase is still seen, but in general the amount of ghosts
is reduced drastically with a factor of 34.33. Overall, the histogram shows 599,025
ghost Λ particles for the default approach and only 17,447 for the neural network
based approach.

Lambda - Ghosts - Default
Entries 1902509
Mean 1.145
Std Dev 0.03245

1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
]2mass [GeV/c

0

1000

2000

3000

4000

5000

6000

en
tr

ie
s

Lambda - Ghosts - Default
Entries 1902509
Mean 1.145
Std Dev 0.03245

Lambda - Ghosts

Figure 5.7: Histogram of the combinatorial background (ghost) of all re-
constructed Λ particles in the mass range from 1.06 GeV/c2 to 1.2 GeV/c2.
Comparison between the reconstructed Λ particles using the default settings
of KF Particle Finder package (blue) and the reconstructed ones using the
ANN4FLES approach (red).

Lambda - FP - Default
Entries 2041749
Mean 1.145
Std Dev 0.03245

1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
]2mass [GeV/c

0

1000

2000

3000

4000

5000

6000en
tr

ie
s

Lambda - FP - Default
Entries 2041749
Mean 1.145
Std Dev 0.03245

Lambda - False Positives

Figure 5.8: Histogram of the false positives of the reconstructed Λ particles in
the mass range of 1.06 GeV/c2 to 1.2 GeV/c2 using the default settings of the
KF Particle Finder package (blue) in comparison to the ANN4FLES approach
(red).

In summary, the background in general is reduced by a huge amount, which is
seen in Figure 5.8. This histogram shows the total amount of falsely reconstructed Λ
particles (combinatorial + physical background) in the mass range of 1.06 GeV/c2 to
1.2 GeV/c2. Here, the default approach reconstructs 633,771 Λ particles incorrectly,

45

Optimization of Λ Signal/Background Ratio

the neural network approach to differ in that only reconstructs 25,761 Λ particles
that are physical or combinatorial background. In comparison to the default cuts, the
neural network rejects a factor of 24.6 more background. Hence, the approach with
looser cuts in combination with ANN4FLES produces 95.94% less total background
compared to the default approach.

With regard to the neural network approach, it can be seen that the number of
false negative Λ particles, which means all Λ particles which has been produced by
the MC simulation but have been classified incorrectly as background by the neural
network, is with a total amount of 2,758 particles not that high (Figure 5.9). In
comparison, the number of true negative Λ particles is significantly greater with a
total amount of 2,006,910 particles (Figure 5.10).

Lambda - FP - ANN4FLES
Entries 2758
Mean 1.156
Std Dev 0.1025

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
]2mass [GeV/c

0

50

100

150

200

250

300

en
tr

ie
s

Lambda - FP - ANN4FLES
Entries 2758
Mean 1.156
Std Dev 0.1025

Lambda - False Negatives - ANN4FLES

Figure 5.9: Histogram of false negatives of all reconstructed Λ particles
in the range of 1 GeV/c2 to 2 GeV/c2, using the looser cuts within the
KF Particle Finder package in combination with ANN4FLES.

Lambda - TN - ANN4FLES
Entries 2006910
Mean 1.329
Std Dev 0.1998

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
]2mass [GeV/c

0

1000

2000

3000

4000

5000

6000

en
tr

ie
s

Lambda - TN - ANN4FLES
Entries 2006910
Mean 1.329
Std Dev 0.1998

Lambda - True Negatives - ANN4FLES

Figure 5.10: Histogram of the true negatives of all reconstructed Λ parti-
cles in the range of 1 GeV/c2 to 2 GeV/c2 using the looser cuts within the
KF Particle Finder package in combination with ANN4FLES.

The performance in comparison to MC information shows that the neural network
based approach is not rejecting too much more signal than stronger cuts, and further-
more, has a huge background rejection potential. While this, in theory, is a good
result from a raw performance perspective, there are no MC information in a real

46

Optimization of Λ Signal/Background Ratio

experiment and the particles reconstructed can not be compared. Thus, statistical and
mathematical methods are used that are only based on the reconstructed Λ particles.
This includes the signal/background ratio of the reconstructed particles as well as the
respective significance.

The signal/background ratio S/B is a metric that describes the proportion of
signal to background. The significance S/

√
S +B is a metric that measures the

clarity of a signal peak in comparison to fluctuations of the background. Here, a
threshold of 5 is considered as a significance value that shows a peak that is unlikely
to be a background fluctuation. Both metrics are calculated to evaluate the results
from physics perspective.

In Figure 5.11, the total amount of reconstructed Λ particles in the mass range of
1.06 GeV/c2 to 1.2 GeV/c2 is fitted by the sum of a Gaussian function (signal) and a
2nd order polynomial (combinatorial and physical background). The fitted function
represents approximately the mass distribution of Λ. Based on the fit, σ is extracted
from the Gaussian fit. Afterwards, the signal can be calculated by the integral in
the range of ±3σ of the Gaussian function that represents the signal, whereas the
background is calculated using the integral of the 2nd order polynomial in the range
of ±6σ around the mean of 1.115 GeV/c2. The resulting signal/background ratio cal-
culated by these integrals is 3.49. Thus, for the approximation based on the function
fits, there is almost 3.5 times more signal than background represented in the data.
The significance for this case is 11.38.

Lambda - All - Default

Mean 1.138
Std Dev 0.03111

1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
]2mass [GeV/c

0

10000

20000

30000

40000

50000

en
tr

ie
s

Lambda - All - Default

Mean 1.138
Std Dev 0.03111

Lambda - All - Default

Figure 5.11: Fitted histogram of all reconstructed Λ particles using the default
approach in the mass range of 1.06 GeV/c2 to 1.2 GeV/c2. The black function
shows the unfitted distribution of the default approach, the blue one the fitted
distribution.

In Figure 5.12, the same functions for fitting are applied to the Λ particles clas-
sified as signal. Thus, to the Λ particles that count as correctly reconstructed if
the neural network makes the decision without MC information. Again, the σ is
extracted to calculate the ±3σ and ±6σ interval boundaries. Using the integrals of
these regions, the resulting signal/background ratio is 38.28. The significance for

47

Optimization of Λ Signal/Background Ratio

this approach has also increased to 12.95.

Lambda - All - ANN4FLES

Mean 1.116

Std Dev 0.008088

1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
]2mass [GeV/c

0

10000

20000

30000

40000

50000

en
tr

ie
s

Lambda - All - ANN4FLES

Mean 1.116

Std Dev 0.008088

Lambda - All - ANN4FLES

Figure 5.12: Fitted histogram of of all reconstructed Λ particles using the
ANN4FLES approach in the mass range of 1.06 GeV/c2 to 1.2 GeV/c2. The
black function shows the unfitted distribution of the neural network approach,
the red one the fitted distribution.

One can see that the signal/background ratio has been increased by a factor of
10.97, using the neural network based classification approach to reject mistakenly
reconstructed Λ particles. This confirms the previously shown results that were
compared to MC information, that the amount of background was reduced by a factor
that is much larger than the amount of falsely rejected signal. Furthermore, the
significance has improved by almost 14%. While both approaches have a significance
that is clearly above the threshold, and therefore both approaches show clear peaks
as expected, this improvement in the significance suggests that the peak produced by
the signal has become more clear compared to the default approach, using the neural
network.

S/B Ratio Significance
Default 3.49 11.38
ANN4FLES 38.28 12.95
Improvement factor 10.97 1.14

Table 5.4: Summary of the results of signal/background ratio and significance, including the
factor of improvement.

48

Conclusion

Chapter 6

Conclusion

The future Facility for Antiproton and Ion Research (FAIR), build in Darmstadt,
Germany, has four major research pillars. One of them is the Compressed Baryonic
Matter (CBM) experiment, which has as the object to investigate the quantum chromo
dynamics (QCD) phase diagram at the region of high baryon densities. One interest
is the investigation of Quark Gluon Plasma (QGP), which is expected to be indicated
by enhanced strangeness. Since Λ is a strange particle that frequently occurs in the
energy range of the CBM experiment, it is chosen to be investigated within this thesis.

To improve the quality of the physics analysis, the objective of this work is to
increase the signal/background ratio of Λ. For this, a deep neural network was de-
ployed, using ANN4FLES in the KF Particle Finder package.

The signal/background ratio can be increased by either increasing the signal or
reducing the background. Since the reconstruction of the signal depends not only on
the KF Particle Finder, but also on the quality of the reconstructed tracks, it is difficult
to improve the signal with the presented approach. Reducing the combinatorial and
physical background generated by the KF Particle Finder package, on the other hand,
is possible with the approach of employing a neural network. However, it is important
that the signal is not additionally reduced by the new approach.

The ANN4LES package was used to create a neural network that could then be
inserted into the KF Particle Finder. The generated neural network for classifying
Λ signal/background, consisting of 10 input neurons, 4 hidden layers consisting of
64 neurons each, and an output layer with 2 neurons, achieved a pure classification
accuracy of nearly 99% on the validation dataset.

The pre-trained neural network was implemented in the KF Particle Finder to
classify the signal and background of the Λ particles on a test data set of 46,000 events.
The generated histograms showed that the background could be significantly reduced
with the help of the neural network. In particular, the reduction of the combinatorial
background is of particular importance, since this background has no added physical
value, consisting purely of falsely generated particles. It could be shown that the
combinatorial background could be drastically reduced.

To evaluate the results from a physical point of view, the signal/background ratio

49

Conclusion

was approximated using a function fitting. The Gaussian fit (signal) and the 2nd
order polynomial fit (background) were each calculated over the mass distribution
of Λ. The resulting signal/background ratio showed that the signal/background ratio
could be improved by a factor of 10.97. Thus, the goal of this work, to optimize the
signal/background ratio, was achieved. In addition, significance was determined to
confirm the quality of the results. It was shown that the significance was improved
by 14%. Even though the neural network based approach reconstructed slightly less
signal particles, the reduction of signal was only a negligible factor of 1.36% in
comparison to the default approach.

The obtained results show that the use of neural networks in the reconstruction
of generated particles from heavy ion collisions can help to improve the physical
analysis. The approach shown to classify Λ particles is a first step in cleaning up the
results. AlthoughΛ is already well reconstructed by the KF Particle Finder package, it
could be shown that improvements, especially in reducing combinatorial background,
are possible.

A next step would be to apply the approach shown to rarer particles to investigate
whether signal/background classification could help reduce background in this region.
In particular, combinatorial background interferes with physical analysis and should
be almost completely removed.

The results generated in this thesis are based on data simulated with the UrQMD
model. For a final evaluation, it should be investigated how the use of a neural
network for background reduction behaves with real data. Especially since it is not
obvious which patterns the neural network learns, a detailed analysis is important.
For this purpose, for example, Shapley Additive exPlanations (SHAP) values can
be determined, by means of which it is possible to analyze on which of the input
parameters the neural network focuses in order to compare these results with physical
theories. This would help to estimate the behavior of the neural network and to verify
the results from a physical point of view.

In summary, the presented neural network was able to reject the background of
Λ efficiently and thus, helped to improve the physics analysis quality of the CBM
experiment by increasing the signal/background ratio significantly.

50

LIST OF FIGURES

List of Figures

1.1 Visualization of a relativistic heavy-ion collision 1

2.1 Facility area of GSI and the future FAIR 3
2.2 QCD phase diagram . 4
2.3 Detector setup of the CBM experiment 5
2.4 Standard model of particle physics 7
2.5 Decay chain of Ω+ in a reconstructed Au-Au collision at 25 AGeV . 9

3.1 Illustration of the architecture of the FLES package 11
3.2 Branch ratios and decay modes of Λ 13
3.3 Block diagram of the reconstructable decays of the KF Particle Finder

package . 14

4.1 Graph to visualize a linear separable function. 18
4.2 Representation of an MLP . 20
4.3 Visualization of a simplified possible loss function in R3 and its

contour plot . 26
4.4 Algorithm of the neural network training, using gradient descent . . 29

5.1 Leaky ReLU function with s = 0.1 40
5.2 Softmax Function for n=2 . 41
5.3 Accuracy values of training and validation, using ANN4FLES for Λ

signal/background classification 41
5.4 All reconstructed Λ particles (signal, background and ghosts) 43
5.5 True positives of reconstructed Λ particles 44
5.6 Physical background of all reconstructed Λ particles 44
5.7 Ghosts of all reconstructed Λ particles 45
5.8 False positives of all reconstructed Lambdas 45
5.9 False negatives of all reconstructed Λ particles 46
5.10 True negatives of all reconstructed Λ particles 46
5.11 Fit of all Λ particles of the default approach 47
5.12 Fit of all Λ particles of the ANN4FLES approach 48

51

LIST OF FIGURES

52

LIST OF TABLES

List of Tables

5.1 Default cut values of the KF Particle Finder in CBM 32
5.2 Looser cut values of the KF Particle Finder in CBM 32
5.3 Parameter which were stored for the neural network approach 33
5.4 Summary of the results of signal/background ratio and significance,

including the factor of improvement 48

53

LIST OF TABLES

54

LISTINGS

Listings

5.1 Storing of daughter χ2
prim values in the KFParticleSIMD object of

the mother particle . 34
5.2 Code section of saving the χ2

geo values in the method ConstructV0

in the class KFParticleFinder . 35
5.3 Code Section of saving the l/∆l, χ2

topo andχ2
prim values in the method

ConstructV0 in the class KFParticleFinder 36
5.4 Extraction of KFParticle object mother_temp from KFParticleSIMD

object mother . 36
5.5 Included code inside the for-loop of Listing 5.4 where the information

of the struct is set . 37
5.6 Assignment of the matched particles to signal or physical background.

In the case of signal the struct is_signal_mc is set to 1, in the case
of physical background to 0. If the particles weren’t matched before
(combinatorial background) is_signal_mc retains the default value
which is set to -1. 38

5.7 Extracting the data for training and validation of the network in the
method MatchParticles of the class KFTopoPerformance 39

5.8 Initialization of ANN4FLES in the constructor of KFParticleFinder 42
5.9 The insertion of the neural network in the ConstructV0 method to

classify the Λ particles. 42

55

LISTINGS

56

ABBREVIATION LIST

Abbreviation list

CBM Compressed Baryonic Matter

FAIR Facility for Antiproton and Ion Research

GSI Gesellschaft für Schwerionenforschung

NUSTAR Nuclear Structure, Astrophysics and Reactions

PANDA Antiproton Anihilation at Darmstadt

APPA Atomic, Plasma Physics and Applications

QCD Quantum Chromo Dynamics

LHC Large Hadron Collider

RHIC Relativistic Heavy Ion Collider

MVD Micro-Vertex Detector

STS Silicon Tracking System

RICH Ring Imaging Cherenkov detector

MuCh Muon Chambers

TRD Transition Radiation Detector

TOF Time Of Flight detector

ECAL Electromagnetic CALorimeter

PSD Projectile Spectator Detector

MRPC Multigap Resistive Plate Chambers

QGP Quark-Gluon Plasma

KF Particle Finder Kalman Filter Particle Finder

FLES package First Level Event Selection package

CA Track Finder Cellular Automaton Track Finder

KF Track Fit Kalman Filter Track Fit

57

ABBREVIATION LIST

SIMD Single Instruction, Multiple Data

PDG Particle Data Group

UrQMD Ultra-relativistic Quantum Molecular Dynamics

MC Monte-Carlo

AI Artificial Intelligence

ML Machine Learning

MLP Multilayer Perceptron

KL divergence Kullback-Leibler divergence

SGD stochastic gradient descent

Adam Adaptive Moment Estimation

SOM Self Organizing Map

NDF number of degrees of freedom

ANN4FLES Artificial Neural Networks for First Level Event Selection

Leaky ReLU Leaky Rectified Linear Unit

FIAS Frankfurt Institute for Advanced Studies

Arg Max Arguments of the Maxima

SHAP Shapley Additive exPlanations

58

REFERENCES

References

[1] R. S. Bhalerao, ‘‘Relativistic heavy-ion collisions,’’ 2014.

[2] D. C. Shen. https://u.osu.edu/vishnu/. [Online; accessed 2023-06-22].

[3] U. Alberica Toia, ‘‘Participants and spectators at the heavy-ion fire-
ball.’’ https://cerncourier.com/a/participants-and-spectators-at-the-heavy-ion-
fireball/, April 2013. [Online; accessed 2023-09-07].

[4] M. Zyzak, Online selection of short-lived particles on many-core computer
architectures in the CBM experiment at FAIR. doctoral thesis, 2016.

[5] S. Bass, ‘‘Microscopic models for ultrarelativistic heavy ion collisions,’’
Progress in Particle and Nuclear Physics, vol. 41, 1998.

[6] S. Glässel, ‘‘Simulationsstudien zur Identifikation von leichten Kernen und Hy-
perkernen mit dem CBM-TRD,’’ Master’s thesis, Goethe-Universität Frankfurt
am Main, Institut für Kernphysik FB 13, 2019.

[7] J. Rafelski and B. Müller, ‘‘Strangeness production in the quark-gluon plasma,’’
Phys. Rev. Lett., vol. 48, Apr 1982.

[8] P. Zyla and P. D. Group, ‘‘Prog. theor. exp. phys.,’’ vol. 2020, 2020.

[9] M. Zyzak, I. Kisel, I. Kulakov, and I. Vassiliev, The KF Particle Finder package
for short-lived particles reconstruction for CBM, vol. 2013-1 of GSI Report.
Darmstadt: GSI Helmholtzzentrum für Schwerionenforschung, 2013.

[10] B. Friman, C. Höhne, J. Knoll, S. Leupold, J. Randrup, R. Rapp, and P. Senger,
eds., The CBM Physics Book: Compressed Baryonic Matter in Laboratory
Experiments. Lecture Notes in Physics, Springer Berlin, Heidelberg, 1 ed.,
2011.

[11] H. Gutbrod, FAIR baseline technical report - Volume 1 Executive Summary.
Darmstadt: GSI, 2006.

[12] N. Kalantar-Nayestanaki and A. Bruce, ‘‘NUSTAR: NUclear Structure Astro-
physics and Reactions at FAIR,’’ Nuclear Physics News, vol. 28, no. 3, 2018.

[13] PANDA Collaboration, W. Erni, et al., ‘‘Physics Performance Report for
PANDA: Strong Interaction Studies with Antiprotons,’’ 2009.

[14] H. Gutbrod, ed., FAIR Baseline Technical Report Volume 5 - Experiment Pro-
posals on Atomic, Plasma and Applied Physics (APPA). Darmstadt: GSI, March
2006.

59

https://u.osu.edu/vishnu/

REFERENCES

[15] FAIR/GSI, ‘‘FAIR-the machine.’’ https://www.gsi.de/en/

researchaccelerators/fair/the_machine. [Online; accessed 2023-06-30].

[16] P. Senger and V. Friese, ‘‘CBM Progress Report 2022,’’ Tech. Rep. CBM PR
2022, Darmstadt, 2022.

[17] V. Friese, ‘‘Computational Challenges for the CBM Experiment,’’ in Mathemat-
ical Modeling and Computational Science (G. Adam, J. Buša, and M. Hnatič,
eds.), (Berlin, Heidelberg), Springer Berlin Heidelberg, 2012.

[18] N. Hermann, ‘‘Status of CBM and expected FAIR day-1/full results,’’ in Work-
shop on Highly Baryonic Matter at RHIC-BES and Future Facilities - beyond the
Critical Point towards Neutron Stars, (University of Tsukuba, Japan), University
of Heidelberg, Germany, 2023.

[19] FAIR/GSI, ‘‘Fair research.’’ https://www.gsi.de/en/

researchaccelerators/fair/research. [Online; accessed 2023-07-05].

[20] FAIR/GSI/CBM, ‘‘Physics.’’ https://www.cbm.gsi.de/physics. [Online;
accessed 2023-07-05].

[21] FAIR, ‘‘Nuclear matter physics.’’ https://fair-center.de/user/

experiments/nuclear-matter-physics. [Online; accessed 2023-07-05].

[22] NuPECC, N. P. E. C. Committee, and A. Bracco, eds., NuPECC long range
plan 2017 : perspectives in nuclear physics. Strasbourg: European Science
Foundation, 2017.

[23] V. Friese and for the CBM Collaboration, ‘‘The high-rate data challenge: com-
puting for the CBM experiment,’’ Journal of Physics: Conference Series,
vol. 898, oct 2017.

[24] P. Kisel, KF particle finder package: missing mass method for reconstruction
of strange particles in CBM (FAIR) and STAR (BNL) experiments. doctoral
thesis, 2023.

[25] I. Deppner and N. Herrmann, ‘‘The CBM Time-of-Flight system,’’ Journal of
Instrumentation, vol. 14, sep 2019.

[26] H. Bannwarth, B. P. Kremer, and A. Schulz, Basiswissen Physik, Chemie und
Biochemie: Vom Atom bis zur Atmung – für Biologen, Mediziner und Phar-
mazeuten. Berlin: Springer-Verlag GmbH Deutschland, 3 ed., 2021. Erweiterte
und aktualisierte Auflage.

[27] I. Kisel, ‘‘Superphysics and supercomputers, introduction to experimental
physics.’’ Presentation, August 2021.

[28] MissMJ, ‘‘Standard model of elementary particles.’’ https://en.wikipedia.
org/wiki/File:Standard_Model_of_Elementary_Particles.svg, 2013.
Source: PBS NOVA [1], Fermilab, Office of Science, United States Department
of Energy, Particle Data Group. Copyright MissMJ, licensed under Creative
Commons Attribution 3.0 Unported license.

60

https://www.gsi.de/en/researchaccelerators/fair/the_machine
https://www.gsi.de/en/researchaccelerators/fair/the_machine
https://www.gsi.de/en/researchaccelerators/fair/research
https://www.gsi.de/en/researchaccelerators/fair/research
https://www.cbm.gsi.de/physics
https://fair-center.de/user/experiments/nuclear-matter-physics
https://fair-center.de/user/experiments/nuclear-matter-physics
https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg

REFERENCES

[29] I. Volker Hertel and Claus-Peter Schulz, Atome, Moleküle und optische Physik
1. Heidelberger Platz 3, 14197 Berlin, Germany: Springer-Verlag GmbH
Deutschland, 2 ed., 2017. Atome und Grundlagen ihrer Spektroskopie.

[30] GSI Helmholtzzentrum für Schwerionenforschung, ‘‘Compressed Baryonic
Matter (CBM) at FAIR.’’ https://www.gsi.de/work/forschung/cbmnqm/

cbm, 2023.

[31] ‘‘The quest for the Origin of Matter: Future research with high-energy heavy-ion
beams at FAIR in Darmstadt: The Compressed Baryonic Matter Experiment.’’
https://www.gsi.de/work/forschung/cbmnqm/cbm; Windows Media Video. [On-
line; accessed 2023-09-07].

[32] V. Akishina, I. Kisel, I. Kulakov, and M. Zyzak, ‘‘FLES–First Level Event
Selection Package for the CBM Experiment,’’ GPUHEP2014 Proceedings,
2014. DOI: http://dx.doi.org/10.3204/DESY-PROC-2014-05/4.

[33] I. Kisel, I. Kulakov, and M. Zyzak, ‘‘Standalone First Level Event Selection
Package for the CBM Experiment,’’ IEEE Transactions on Nuclear Science,
vol. 60, no. 5, 2013.

[34] CBM Collaboration, V. Friese, et al., ‘‘The high-rate data challenge: computing
for the CBM experiment,’’ Journal of Physics: Conference Series, vol. 898,
2017. 54.02.03; LK 01.

[35] V. Akishina, I. Kisel, P. Kisel, P. Senger, I. Vassiliev, and M. Zyzak, ‘‘Recon-
struction of Particles Produced at Different Stages of Heavy Ion Collision in
the CBM Experiment at FAIR.’’ Poster, February 5-11 2017.

[36] R. E. Kalman, ‘‘A New Approach to Linear Filtering and Prediction Problems,’’
Journal of Basic Engineering, vol. 82, 03 1960.

[37] R. E. Kalman and R. S. Bucy, ‘‘New Results in Linear Filtering and Prediction
Theory,’’ Journal of Basic Engineering, vol. 83, 03 1961.

[38] R. Marchthaler and S. Dingler, Kalman-Filter: Einführung in die Zustandss-
chätzung und ihre Anwendung für eingebettete Systeme. Springer Vieweg
Wiesbaden, 1 ed., 2017. Softcover ISBN: 978-3-658-16727-1.

[39] G. Einicke and L. White, ‘‘Robust extended Kalman filtering,’’ IEEE Transac-
tions on Signal Processing, vol. 47, no. 9, 1999.

[40] V. Akishina and I. Kisel, ‘‘Parallel 4-Dimensional Cellular Automaton Track
Finder for the CBM Experiment,’’ Journal of Physics: Conference Series,
vol. 762, oct 2016.

[41] S. Gorbunov, U. Kebschull, I. Kisel, V. Lindenstruth, and W. Müller, ‘‘Fast
SIMDized Kalman filter based track fit,’’ Computer Physics Communications,
vol. 178, no. 5, 2008.

[42] V. Ashikina, ‘‘Time-based particle reconstruction and event selection in the
cbm experiment.’’ presentation.

61

https://www.gsi.de/work/forschung/cbmnqm/cbm
https://www.gsi.de/work/forschung/cbmnqm/cbm
http://dx.doi.org/10.3204/DESY-PROC-2014-05/4

REFERENCES

[43] M. Bleicher, E. Zabrodin, C. Spieles, S. A. Bass, C. Ernst, S. Soff, L. Bravina,
M. Belkacem, H. Weber, H. Stöcker, and W. Greiner, ‘‘Relativistic hadron-
hadron collisions in the ultra-relativistic quantum molecular dynamics model,’’
Journal of Physics G: Nuclear and Particle Physics, vol. 25, sep 1999.

[44] A. Banerjee, I. Kisel, and M. Zyzak, ‘‘Artificial neural network for identification
of short-lived particles in the CBM experiment,’’ Int. J. Mod. Phys. A, vol. 35,
no. 33, 2020.

[45] C. Amsler et al., ‘‘Particle Data Group,’’ Physics Letters B, vol. 667, 2008.

[46] Y. Fisyak, V. Ivanov, H. Ke, I. Kisel, P. Kisel, G. Kozlov, S. Margetis, A. Tang,
and I. Vassiliev, ‘‘Missing Mass Method for Short-Lived Particle Reconstruction
in the CBM and STAR Experiments,’’ in 9th International Conference on
Distributed Computing and Grid Technologies in Science and Education, 2021.

[47] I. Kisel, ‘‘AI Techniques for Event Reconstruction.’’ Presentation.

[48] GSI, ‘‘cbmroot.’’ https://git.cbm.gsi.de/computing/cbmroot, 2023. Git-
Lab Community Edition.

[49] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, ‘‘A proposal for
the darthmouth summer research project of artificial intelligence,’’ 1955.

[50] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Adaptive Com-
putation and Machine Learning, The MIT Press, Massachusetts Institute of
Technology, 2016.

[51] F. Rosenblatt, ‘‘The perceptron: a probabilistic model for information storage
and organization in the brain,’’ Psychological review, vol. 65 6, 1958.

[52] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learning
applied to document recognition,’’ Proceedings of the IEEE, vol. 86, no. 11,
1998.

[53] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural Com-
putation, vol. 9, no. 8, 1997.

[54] I. Sarker, ‘‘Deep learning: A comprehensive overview on techniques, taxon-
omy,’’ Springer, 2021.

[55] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘Imagenet: A
large-scale hierarchical image database,’’ 2009.

[56] R. Rojas, Neural Networks, A Systematic Introduction. Springer Berlin, Heidel-
berg, 1 ed., 1996.

[57] G. D. Rey and K. F. Wender, Neuronale Netze - Eine Einführung in die Grund-
lagen, Anwendungen und Datenauswertung. Hans Huber, Hogrefe AG, Bern,
1 ed., 01 2008.

62

https://git.cbm.gsi.de/computing/cbmroot

REFERENCES

[58] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Second Edition. Springer Series in
Statistics, New York, NY: Springer New York, NY, 2 ed., 2009. Published: 26
August 2009.

[59] T. Kohonen, Self-Organizing Maps. Springer Series in Information Sciences,
Berlin, Heidelberg: Springer Berlin, Heidelberg, 3 ed., 2001. Published: 06
December 2012.

[60] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, Second
Edition. The MIT Press, 2 ed., 2018. Published: November 13, 2018.

[61] J. Joyce, Kullback-Leibler Divergence. Springer, Berlin, Heidelberg, 2011.
Published: 02 December 2014.

[62] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning representations
by back-propagating errors,’’ Nature, vol. 323, Oct. 1986.

[63] S. Ruder, ‘‘An overview of gradient descent optimization algorithms,’’ 2017.

[64] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ 2017.

[65] J. Kubát, ‘‘Reconstruction of strange hadrons in collisions of nuclei at RHIC,’’
Master’s thesis, Czech Technical University in Prague, August 2020.

63

	Introduction
	Compressed Baryonic Matter Experiment at FAIR
	The CBM Detector Setup
	Basic Knowledge of Quarks
	CBM Research Area

	Kalman Filter Particle Finder Package
	Functionality of kfpf Package
	Structure of the Package

	Artificial Neural Networks
	The Perceptron by Rosenblatt
	Multilayer Perceptron
	Forward Propagation
	Neural Network Training Paradigms and Key Terminologies
	Training by Supervised Learning
	Cross-Entropy
	Backpropagation
	Optimization Algorithm

	Optimization of Signal/Background Ratio
	Adjusting Specific Cuts for the Network Approach
	Extraction of the Training Data
	Neural Network Model
	Implementation of ANN4FLES in the KF Particle Finder Package
	Results

	Conclusion
	References

