
Deep Learning for Identification
of Short-Lived Particles

in the CBM Experiment at FAIR

Master Thesis
for attaining the Master of Science degree

in Computer Science

submitted by
Robin Lakos

Institute of Computer Science
Johann Wolfgang Goethe-University

Frankfurt am Main, Germany

Supervisor: Prof. Dr. Ivan Kisel

05.04.2023

Erklärung zur Abschlussarbeit
gemäß § 34, Abs. 16 der Ordnung für den Masterstudiengang Informatik vom 17.
Juni 2019

Hiermit erkläre ich

Lakos, Robin
(Nachname, Vorname)

Die vorliegende Arbeit habe ich selbstständig und ohne Benutzung anderer als der
angegebenen Quellen und Hilfsmittel verfasst.

Ebenso bestätige ich, dass diese Arbeit nicht, auch nicht auszugsweise, für eine
andere Prüfung oder Studienleistung verwendet wurde.

Zudem versichere ich, dass die von mir eingereichten schriftlichen gebundenen Ver-
sionen meiner Masterarbeit mit der eingereichten elektronischen Version meiner
Masterarbeit übereinstimmen.

Frankfurt am Main, den 05.04.2023

————————————
Unterschrift des Studierenden

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Prof. Dr. Ivan Kisel,
for his invaluable guidance, feedback and support throughout the present thesis and
beyond. I am also grateful for the members of his work group, who have supported
me at all times. Lastly, special thanks to my family and friends. During my studies,
their belief in me has kept my motivation high.

Abstract

The future heavy-ion experiment Compressed Baryonic Matter (CBM) at the Facility
for Antiproton and Ion Research (FAIR) will provide scientists around the globe an
opportunity to investigate rare short-lived particles and the properties of matter under
extreme conditions. CBM’s research program will complement existing heavy-ion ex-
periments by studies of phase transitions at high baryonic densities and, furthermore,
with a collision rate of up to 10 MHz, CBM offers unprecedented capabilities in the
research of rare short-lived particles. The event selection in CBM requires a full
event reconstruction that is accomplished by the First Level Event Selection (FLES)
package.

One of the centerpieces of FLES is the Kalman Filter Particle Finder (KFPF),
an algorithm package for online reconstruction and selection of short-lived particles.
KFPF includes a method for reconstruction of particle decays, where possible mother
particles compete with each other. The competition initiates a rejection of falsely
assumed mother particles and, hence, reduces the background. This, in turn, directly
increases the quality of physics analysis. In this work, neural networks are used as an
attempt to improve the method’s performance.

In recent years, the application of machine learning algorithms and neural net-
works in particular has become popular in several operational areas. A high per-
formance neural network package called Artificial Neural Networks for First Level
Event Selection (ANN4FLES) is developed to be integrated in FLES. In the present
thesis, ANN4FLES is integrated in FLES for the first time to solve a classification
task within the package.

TheKs-mesons andΛ-hyperons are neutral particles that consist of strange quarks.
Since theoretical predictions suggest that enhanced strangeness production might
be an indicator for deconfined matter, Ks and Λ are investigated in particular. Both
particles are present abundantly and offer therefore reliable information about the
collision’s properties.

Two deep learning approaches are introduced: One based on the mass and PDG-
mass values of the candidates, the other using mass and transverse momentum
instead. It will be shown that the difference between both ANN4FLES approaches
is negligible. During training- and testing-phase, both networks classify candidates
with an accuracy of more than 98% on the validation set. The pre-trained neural
network is then included in KFPF to show its potential in the event reconstruction
chain. Therefore, not only the raw classification performance is analyzed, but also a
signal-background analysis using the performance tools provided by the KFPF. For
Ks and Λ, the neural networks offer slightly better results than the existing method
of KFPF. This suggests that neural networks might be helpful to improve physics
analysis by solving the competition task. However, other particles are not considered
in the present work. Therefore, it is suggested to extend the approach to a multiple
particle classification.

Kurzfassung

Das zukünftige Schwerionenexperiment Compressed Baryonic Matter (CBM) an der
Facility for Antiproton and Ion Research (FAIR) wird Wissenschaftlern aus vielen
Ländern der Welt die Möglichkeit bieten, seltene kurzlebige Teilchen sowie die
Eigenschaften von Materie unter extremen Bedingungen zu untersuchen. Das CBM-
Forschungsprogramm wird die bestehenden Schwerionenexperimente durch Unter-
suchungen von Phasenübergängen bei hohen Baryonendichten ergänzen. Darüber
hinaus bietet CBM mit einer Kollisionsrate von bis zu 10 MHz noch nie dagewesene
Möglichkeiten zur Erforschung seltener kurzlebiger Teilchen. Die Ereignisauswahl
in CBM erfordert eine vollständige Ereignisrekonstruktion, die mithilfe des First
Level Event Selection (FLES) Pakets durchgeführt wird.

Eines der Herzstücke des FLES Pakets ist der Kalman Filter Particle Finder (KFPF),
ein Algorithmenpaket für die online Rekonstruktion und Auswahl von kurzlebigen
Teilchen. KFPF beinhält eine Methode zur Rekonstruktion von Zerfallsprozessen,
in der mögliche Mutterpartikel-Kandidaten miteinander konkurrieren. Dieser Wet-
tkampf zwischen Kandidaten initiiert eine Ablehnung von fälschlicherweise rekon-
struierten Mutterpartikeln und reduziert so Störsignale (engl. Background). Dadurch
hat die Methode einen direkten Einfluss auf die Qualität der Ergebnisse, die für
die physikalische Analyse notwenig sind. Als ein Verbesserungsversuch des bereits
implementierten Wettkampfs, werden in der vorliegenden Thesis neuronale Netze
eingesetzt.

In den letzten Jahren hat die Anwendung von neuronalen Netzen in verschiedenen
Einsatzbereichen an Beliebtheit dazu gewonnen. Daher wurde ein leistungsstarkes
Paket für neuronale Netze namens Artificial Neural Networks for First Level Event
Selection (ANN4FLES) entwickelt, das in der vorliegenden Arbeit zum ersten Mal
in FLES integriert wird, um eine Klassifizierungsaufgabe innerhalb des Pakets zu
bewältigen.

Die beiden neutralen PartikelKs-Meson undΛ-Hyperon beinhalten beide Strange-
Quarks. Da theoretische Vorhersagen darauf hindeuten, dass eine erhöhte Strangeness-
Produktion ein Anzeichen für entfesselte Materie (engl. deconfined matter) sein
könnte, beinhalten beide Partikel wertvolle Informationen. Zudem kommen beide
Partikel in den Kollisionen zahlreich vor und bieten somit eine zuverlässliche Infor-
mationsquelle über die Eigenschaften der Kollision.

In dieser Arbeit werden zwei Deep-Learning Ansätze vorgestellt. Der erste
Ansatz basiert auf den Masse-Werten und den Soll-Masse-Werten (PDG-Masse) der
konkurrierenden Kandidaten, während der zweite Ansatz auf den Masse-Werten und
dem Transversalimplus der jeweiligen Kandidaten basiert. Es wird gezeigt, dass
beide ANN4FLES-Ansätze mit einer Klassifizierungsrate von über 98% auf den
Testdaten hervorragende Klassifizierungsergebnisse erzielen. Die vor-trainierten
neuronalen Netze werden dann in den KFPF implementiert, um deren Leistung in
der vollständigen Rekonstruktionskette zu messen. Mithilfe der von KFPF bereit-
gestellten Werkzeuge zur Leistungsmessung wird eine Signal-Background-Analyse
durchgeführt. Da die neuronalen Netze auch hier gute Ergebnisse erzielen, wird für
zukünftige Forschung empfohlen, Ansätze mit neuronalen Netzen weiter zu verfolgen,
insbesondere mit der Implementierung einer Klassifikation von mehreren Partikeln.

Contents

1 Introduction 1
1.1 Heavy-Ion Experiments . 2
1.2 Reconstruction of Events . 4

2 The CBM Experiment at FAIR 7
2.1 Compressed Baryonic Matter (CBM) Experiment 8
2.2 First Level Event Selection (FLES) 10
2.3 Kalman Filter Particle Finder (KFPF) 13

2.3.1 Particle Identification in the KFPF 16
2.3.2 Performance Measurements in the KFPF 19
2.3.3 KFPF Performance: Existing Competition 20

3 Neural Networks and Deep Learning 25
3.1 Perceptron: The Smallest Neural Network 26

3.1.1 Problem of Linear Separability 27
3.2 Multi-Layer Perceptron: Breaking Linearity 28
3.3 Network Regularization Methods 29
3.4 Learning Paradigms of Machine Learning 32
3.5 Supervised Learning: Neural Network Training 33
3.6 Information Theory and Cross-Entropy Loss 37
3.7 ANN-Based Particle Identification in KFPF 40
3.8 ANN4FLES: High Performance Neural Networks 43

4 Deep Learning for Identification of Short-Lived Particles 45
4.1 Extraction of Training Data in KFPF 45
4.2 ANN4FLES Implementation in KFPF 47
4.3 Deep Learning Classification: m+ PDGm 49
4.4 Deep Learning Classification: m+ pt 55

5 Conclusion 61

6 Zusammenfassung 65

List of Figures 70

References 71

Introduction

Chapter 1

Introduction

For several centuries, humanity assumed that all matter is made up of atoms - very
small and indivisible. Back in 1911, after his famous gold-foil experiment, Rutherford
supposed that atoms consists of a tiny high concentrated positively charged atomic
nucleus, whereas the rest of the atom is spread out in a relatively large volume around
the core [1]. Later, further experiments gained evidence that supported the theory of
an atom’s core-shell structure, which is generally acknowledged until today. However,
at the latest in the early 1960s, physicists proposed their first theories about the
existence of quarks as fundamental particles that make up protons, neutrons and other
particles [2, 3].

Nowadays, the idea of quarks is considered as a breakthrough in the understanding
of the subatomic world. Since the 1970s, experimental evidence confirmed not
only the existence of quarks, but also of other fundamental particle classes, such
as leptons, gauge bosons and scalar bosons. The developed Standard Model (see
Figure 1.1) summarizes the current knowledge in particle physics, including six
flavors of discovered quarks and their corresponding anti-particles, three types of
charged leptons along with their associated neutrinos. Furthermore, there are other
particles that interact with quarks and leptons in various ways, such as gluons, that
are strong force-carrying particles responsible to bind quarks and, thus, help to form
hadrons like protons and neutrons.

Standard Model of Elementary Particles
three generations of matter

(fermions)

I II III

interactions / force carriers
(bosons)

mass

charge

spin

Q
U

A
R

K
S

u
≃2.2 MeV/c²

⅔

½

up

d
≃4.7 MeV/c²

−⅓

½

down

c
≃1.28 GeV/c²

⅔

½

charm

s
≃96 MeV/c²

−⅓

½

strange

t
≃173.1 GeV/c²

⅔

½

top

b
≃4.18 GeV/c²

−⅓

½

bottom

L
E

P
T

O
N

S

e
≃0.511 MeV/c²

−1

½

electron

νe
<1.0 eV/c²

0

½

electron
neutrino

μ
≃105.66 MeV/c²

−1

½

muon

νμ
<0.17 MeV/c²

0

½

muon
neutrino

τ
≃1.7768 GeV/c²

−1

½

tau

ντ
<18.2 MeV/c²

0

½

tau
neutrino G

A
U

G
E

 B
O

S
O

N
S

V
E

C
T

O
R

 B
O

S
O

N
S

g
0

0

1

gluon

γ
0

0

1

photon

Z
≃91.19 GeV/c²

0

1

Z boson

W
≃80.433 GeV/c²

±1

1

W boson

S
C

A
L

A
R

 B
O

S
O

N
S

H
≃124.97 GeV/c²

0

0

higgs Figure 1.1: The Standard
Model of particle physics,
including the six flavors of
quarks, three types of lep-
tons with their respective
neutrinos and particles re-
sponsible for interactions.
[4]

1

Introduction

For example, the already mentioned proton consists of two up quarks and one
down quark, resulting in a positive electric charge of 2/3 + 2/3− 1/3 = 1 whereas
neutrons consist of a single up quark and two down quarks, resulting in a neutral
electric charge of 2/3− 1/3− 1/3 = 0. These particles are grouped by their amount
and type of quarks: three quarks build a baryon, three anti-quarks build an anti-baryon,
whereas a quark plus an anti-quark build a meson. Today, about 120 types of baryons
and 140 types of mesons are known [5] and the properties of these particles are
studied in particle physics experiments around the world for several reasons. Firstly, a
better understanding of matter and the forces that govern it. For instance, where does
the strong nuclear force originates that binds quarks and gluons, and why is it stronger
than other fundamental forces such as gravity and electromagnetism [6]? Secondly,
these experiments provide an opportunity to test existing theories in physics like the
studies of assumed phase transitions of matter in the Quantum Chromodynamics
phase diagram. And thirdly, the properties of particles might be important for new
technologies: for example, applications in medicine. There are already experiments
for heavy-ion cancer therapy with confident results [7]. However, one of the main
reasons is the discovery of new physics within the Standard Model and beyond, that
lead to a better understanding of our universe.

Big Bang vs little bangs

Little Bang

Expanding systems. Difference: space not expanding.

Difference: One Event vs many events
(cosmic variance vs e.b.e. fluctuations)

M. Stephanov (UIC) QCD Critical Point CERN 2016 11 / 32

Figure 1.2: Relativistic heavy-ion collisions as a tool to understand the structure and behavior
of matter. Starting from the left, particles collide within the collision overlap zone, whereas
particles that do not take part in the collision are called spectators. Under extreme conditions,
colliding particles transform into Quark Gluon Plasma (QGP), where deconfinement allows
quarks to move freely and form to hadrons (Hadronization). In the kinetic freeze-out, the
hadron gas cools down further below the point where new hadrons can be formed. The
existing hadrons fly into the detector setup and the collision can be reconstructed. [8]

1.1 Heavy-Ion Experiments
The future heavy-ion experiment Compressed Baryonic Matter (CBM) at the Facility
for Antiproton and Ion Research (FAIR) will provide scientists the ability to study
super-dense nuclear matter under various extreme conditions, producing enormous
high baryonic densities [9]. Whereas other experiments such as STAR (BNL) and

2

Introduction

ALICE (CERN) investigate the properties of matter under extreme temperatures as
they existed in the Big Bang [10], CBM complements the heavy ion research program
by focusing on the state of matter as it occurs in the center of neutron stars before
they collapse into black holes.

From another perspective, the research area of CBM is a different region in the
Quantum-Chromodynamics (QCD) phase diagram, compared to other heavy-ion
physics experiments. The diagram visualizes states of matter and phase transitions
of nuclei under extreme conditions of temperature and density (see Figure 1.3), that
are studied by researchers worldwide. Further, it illustrates the investigation area of
the critical point, where the conditions are created for the so-called deconfinement:
the phase transition where quarks and gluons become Quark-Gluon-Plasma (QGP)
and break their strong connectivity.

Figure 1.3: Quantum-
Chromodynamics (QCD) phase diagram:
temperature on y-axis, density on x-axis. The
dark blue arrow indicates the research area
of CBM (FAIR), the red arrow shows the
region of STAR (RHIC) and ALICE (LHC).
The areas in blue and orange are studied
in particle physics experiments around the
globe. [11]

In general, there are two types of heavy-ion physics experiments: fixed-target
and collider experiments. For example, STAR1 and ALICE are collider experiments.
In these experiments, beams of heavy-ions are accelerated from opposite directions
up to relativistic speeds to collide within the detector environment. Their collision
creates enormous temperatures in the main collision point, the so-called primary
vertex: Colliding ions burst into particles that are measured by the detectors that are
build barrel-shaped around the intended collision point. A fixed-target experiment,
such as CBM, accelerates beams of particles targeting a stationary target, e.g. a block
of gold. In these experiments, the detectors are usually build around and behind the
intended target, such that particles can be measured after the collision.

Some of the created particles are common and already well-investigated, whereas
others are rare. The investigation of rare short-lived particles is a major goal of
the CBM experiment, but rareness leads to two further challenges. First of all, the
experiment has to be repeated thousands of times to create rare events where particles
of interest are created. Statistical evidence is crucial when errors in measurements,
calculation inaccuracy and mistakenly assumed hypotheses can not be eliminated
with certainty. Secondly, there is a huge amount of energy required to run these
experiments [13]. Beside the particle accelerator itself, a major factor is the energy
consumption by high performance computers that are used for reconstruction and
analysis algorithms during the beam-time. Furthermore, in CBM, a full event re-
construction is required to be performed in real-time and therefore, efficient and fast
algorithms are essential for event analysis [14]. In the present thesis, neural network

1Within the scope of the RHIC Beam Energy Scan program, STAR also has a fixed-target program
for investigation of lower energies. [12]

3

Introduction

based approaches are further investigated to increase the reconstruction efficiency for
the experiment.

1.2 Reconstruction of Events
The study of particles created in the collisions, so called events, requires to process
large amounts of detector responses of up to 1TB/s [15]. On the one hand, the colli-
sion rates are chosen as high as possible to find rare particles efficiently. On the other
hand, data streams created by these high interaction rates can not be fully-stored by
modern computers. Therefore, usually, first analysis stages are used to select events
of interests, so called trigger stages. In CBM, a major goal is the investigation of rare
short-lived particles. Since these particles tend to decay before reaching any detector
they could interact with, there is no simple criteria to implement such triggers in
CBM. The experiment requires a full event reconstruction for the decision of storing
events of interest. The full event reconstruction processing requires fast algorithms
for online-reconstruction. The First Level Event Selection (FLES) package is used for
handling CBM’s high interaction rates of up to 10 MHz, including a reconstruction
of particle decays. After that, a decision can be made if an event is of interest and
should be stored or rejected.

However, in recent years the application of machine learning algorithms in par-
ticle physics experiments has become popular and neural networks, for example,
were applied in several stages of the experiments [16, 17, 18]. For applications in
CBM’s FLES package: ANN4FLES, a fast, modular and independent neural network
package is developed [19, p. 161]. In this work, deep neural networks provided by
ANN4FLES are applied to the reconstruction of particle decays of Ks-mesons and
Λ-hyperons. Whereas ANN4FLES is still in development, the neural networks were
tested and compared on multiple well-known data sets to allow confidence in the
network’s functionality.

The Kalman Filter Particle Finder (KFPF), an important package inside FLES,
is used for the reconstruction of particles and their decays online [20]. After the
particle trajectories (tracks) were reconstructed and extrapolated by other packages
of FLES, KFPF tries to find intersections between tracks to find possible points of
decay - so called secondary vertices. Either due to the extreme conditions, particle
instability, particle interaction with other particles or interactions between particles
and detectors, some particles decay (see Figure 1.4). This might happen right after
the collision or at and between detectors. The KFPF package provides reconstruction
capabilities for more than 150 decays, covering all signals relevant for the CBM
experiment [21].

In this work, the performance of neural networks in this context is investigated.
When particles decay, they are referred to as mother particle, that splits into multiple
daughter particles. In KFPF, a competition approach already exists. The existing
method compares two mother particle candidates, using their mass distance to their
respective known mass distribution peak, to find the best fitting mother particles.
Particles that lose the competition are rejected. Here, the challenge is that some
daughter particles can be raised by different types of mother particles. For example,

4

Introduction

Figure 1.4: Starting from the pri-
mary vertex, particles fly in many di-
rections. Several of them tend to de-
cay at the so called secondary vertices
into daughter particles. The decay-
ing particle is called mother particle.
[22]

the decay of Λ → pπ− gives raise to π− as well as the decay of Ks → π+π−. In
turn, for a full event reconstruction a hypothesis has to be made, if π− was raised by
the decay of Λ or Ks.

Previous work suggests, that neural networks can offer comparable results to the
existing approach, investigating the decays of Λ and Ks [23]. The neural network
was trained on 10’000 simulated events using generated data of the PHSD model,
classifying Λ or Ks based on the mass values of the mother candidates and their
respective PDG mass — the mass particles should have. However, it also proposes to
study the classification performance based on the candidate’s masses and transverse
momentum, which is also studied and introduced in the present thesis.

5

The CBM Experiment at FAIR

Chapter 2

The CBM Experiment at FAIR

The Facility for Antiproton and Ion Research (FAIR) is an international particle
accelerator facility being build in Darmstadt, Germany. It extends the research
areas and technical possibilities of the already existing Gesellschaft für Schwerionen-
forschung (GSI) laboratory [24]. FAIR provides scientists from all over the world
the opportunity to analyze the structure of matter to gain insights in the evolution
of our universe. The synchrotrons SIS100 and SIS300 will form the centerpiece at
FAIR, providing acceleration of particles up to relativistic speeds.

Figure 2.1: Overview of experimental complexes Gesellschaft für Schwerionen-
forschung (GSI) in blue and Facility for Antiproton and Ion Research (FAIR) in red. [25]

The synchrotrons SIS100 and SIS300 are designed to create heavy-ion and proton
beams with an energy range of 2-44 AGeV [26]. The charge of ions and protons is
utilized to accelerate the particles with magnets, allowing significant fractions of the
speed of light. At these speeds, relativistic effects such as time dilation and length
contraction become relevant as a direct consequence of the special theory of relativity
[27]. Therefore, for instance, particles that collide at relativistic (or ultra-relativistic)
speeds, will have a longer lifetime before decaying, which has to be considered in

7

The CBM Experiment at FAIR

physics analysis. The accelerators will be used to generate high frequency collisions
of up to 10 MHz for the analysis of rare probes, e.g. for the CBM experiment.

2.1 Compressed Baryonic Matter (CBM) Experiment
Compressed Baryonic Matter (CBM) at FAIR will be a heavy-ion experiment used
to (1) explore the region of high baryonic densities and moderate temperatures in
the Quantum-Chromodynamics phase diagram and (2) search for rare short-lived
particles. CBM is a fixed-target experiment and thus has a detector setup lined up
behind and around the stationary target (typically several 100µm thin [28]) to measure
particles produced in the collisions. As shown in Figure 2.2, the planned detector
setup for CBM consists of up to seven detectors, each measuring different types of
particles or used for specific measurements as, for instance, momentum and energy
of particles.

Dipole Magnet

Silicon Tracking System (STS)

Transition Radiation Detector (TRD)

Time of Flight Detector (ToF)

Muon Chambers Detector (MuCh)

Micro Vertex Detector (MVD)

Ring Imaging Cherenkov Detector (RICH)

Target

Electromagnetic Calorimeter (ECAL)

Projectile Spectator Detector (PSD)

Figure 2.2: Planned detector setup of the future CBM experiment at FAIR: particle beam
direction from left to right. RICH, TRD and ECAL are removed in case of muon setup,
whereas RICH is replaced by MuCh. [21]

A particle can only be recognized, if it interacts with a detector or decays into
detectable particles. Thus, for example, when a neutral particle hits a detector that is
triggered by electrical charge, it will be invisible and has to be measured by other
detectors directly or indirectly through reconstruction by other methods, such as the
Missing Mass Method [21].

The first detectors are a Micro Vertex Detector (MVD) for high resolution tracking
of charged particles and a Silicon Tracking System (STS) to track particles over a
wider range of angles and momenta. Both are build within a magnet. The magnetic
field curves charged particles’ trajectories, which (1) allows to recognize their electric

8

The CBM Experiment at FAIR

charge’s sign based on the deflection direction and (2) makes it possible to calculate
particles’ momenta based on their trajectories’ radius. Therefore, MVD and STS are
able to recognize positions, type of charge and momenta of charged particles close to
the primary vertex. [29, 30, p. 625-626]

The Ring-Imaging CHerenkov (RICH) detector follows: Charged particles that fly
through it send out Cherenkov radiation (light) by means of photons. Depending on
the particle’s properties, the angle in which these photons leave the particle changes.
Thus, the detector measures photon rings with a diameter that allows to infer the
particle’s properties and therefore helps to identify particles. [31, 30, p. 626-627]

As the third detector in CBM, a Transition Radiation Detector (TRD) is planned.
The TRD is designed to detect charged particles such as electrons and positrons. It
is usually built with thin metal foil layers separated by gas-filled chambers. When
charged particles pass the foils, they will interact and emit transition radiation. This
in turn can provide information about particles momenta and energy by measuring
the amount and energy distribution of the transition radiation within the chambers.
[32, 30, p. 627]

The Time Of Flight (TOF) detector follows TRD. As the name suggests, the TOF
measures the time that particles take to travel within the detector from one point to
another. This provides information about the particles’ momenta and velocities. The
velocity in turn is used to identify different types of particles with similar energies
but different masses. For example, it can be used to separate pions from kaons or
protons from electrons. [33, 30, p. 628]

The second last detector in CBM is the Electromagnetic CALorimeter (ECAL). It
actually destroys charged particles to determine their total energy. These particles
decay within the material and produce so called electromagnetic showers causing e+ /
e− pairs and photons. These shower products in turn interact with other materials that
emit light, which is measured and converted into an electrical signal. The particles’
energy and the measured light is proportional and therefore allows the calculation of
the particle’s energy. [34, 30, p. 628]

Finally, the Projectile Spectator Detector (PSD). As it is not unusual for colliding
particles to have a slight non-centrality, there exist a part of particles that do not
participate in the collision itself and miss the target - so called spectators. The energy
and multiplicity of spectators provide information about the nature of an event, and
therefore are crucial for the studies at CBM. [35, 30, p. 628]

However, there is another planned detector setup that allows to search for muons.
In this case, RICH, TRD and ECAL are removed and a Muon Chambers (MuCh) are
put in place of RICH [20, p. 14]. Although muons are similar to electrons, they are
heavier and can pass through many materials without interaction. Thus, as mentioned
before, the non-interaction makes them invisible for many detectors, requiring special
detectors. [30, p. 627-628]

Summarized, particles created in the collision are measured by a set of detectors

9

The CBM Experiment at FAIR

that make use of various physical and chemical reactions. These detector hits can
then be used to identify the created particles and to reconstruct parts of the event.

2.2 First Level Event Selection (FLES)
The particles created in collisions of the CBM experiment can be divided into two
classes: (1) long-lived particles that are measured directly in a detector setup around
the point of collision and (2) short-lived particles that decay - sometimes multiple
times - before reaching any detector and which are particularly of scientists’ interest.
Since the study of rare short-lived particles is a major goal of CBM, high collision
rates are required to obtain statistical evidence despite the poor particle yields of rare
probes. Therefore, the events are being created with a rate of up to 10 MHz = 107

collisions per second, which leads to further challenges.

At this rate, modern computers are not able to store the data streams completely.
Assuming a theoretical maximal record speed of 7GByte/s for current M.2-NVMe
SSDs and 40kByte of data for a gold-gold heavy-ion collision, it is possible to store
the data of collisions at a rate of not more than 175kHz. Therefore, obviously not all
data will be stored. The data streams created through detector response signals are
transmitted into the Data AcQuisition (DAQ) room, where a first data pre-processing
is executed (see Figure 2.3). Here, a FLES input node computer cluster prepares
the data for its transfer to the Green Cube, the high performance computer center of
GSI/FAIR, where the First Level Event Selection is processed [36].

Dirk Hutter – DPG Spring Meeting Heidelberg – 2015-03-27

CBM

Interval Building

L1

15

CBM Readout Architecture
Conventional 

system
Detector

FEE buffer

Readout 
buffer

Network

Processor 
farm

Storage

Self-triggering Front-end; 
all hits shipped to DAQ. 
Data push architecture

High-throughput network

First event selection  
performed in processor farm

Readout buffer outside radiation
area, many GByte Allows L1
decision times up to 100-1000 ms

Fast FEE links

Typical Parameters: 
1% occupancy, 107 int./s

100 kHz channel hit rate
1 MByte/s per channel

whole CBM: ~ 1 TByte/s

Event Building

HLT

L1 
trigger

L2 
trigger

Figure 2.3: Visualiza-
tion of the Data AcQuisi-
tion (DAQ) and event se-
lection at the CBM experi-
ment compared to conven-
tional multi-level trigger
stages in other heavy-ion
experiments. [21]

In CBM, there is no simple criteria for event selection. As short-lived particles
might not be measured at all, a full event reconstruction is required for each collision,
including the reconstruction of particle decays to find short-lived particles of interest.
An example is the decay-chain of Ω̄+, that consists of three anti-strange quarks (s̄s̄s̄),
the anti-particle for Ω+ that itself consists of three strange quarks (sss). Ω̄+ is an
highly instable particle with a short lifetime of (0.823± 0.011)× 10−10 seconds [37]
and is a rare particle as it contains three anti-strange quarks. Theoretical predictions
suggest that enhanced strangeness production might be an indicator for deconfined
matter [38] and strange quarks are abundantly created in the energy range of CBM
[23], making them attractive to study the high density area of the QCD phase diagram.

10

The CBM Experiment at FAIR

In the present thesis, Ks mesons and Λ hyperons are investigated in particular, as
they both include strange quarks. Since these particles are not rare, they reliably
provide information about the collisions properties.

However, whereasKs andΛ are important for different reasons, rare particles such
as Ω̄+ require the reconstruction of two secondary vertices: Since Ω̄+ → Λ̄K+ →
π+p̄K+ (see Figure 2.4), first Λ̄ has to be reconstructed before the secondary vertex
of Ω̄+ can be reconstructed. Thus, the investigation of Ω̄+ requires a full event re-
construction, such that events including the particle are stored to disk for later analysis.

FLES

18

Prof. Dr. Ivan Kisel, Uni-Frankfurt, FIAS, GSI CBM Retreat, 24.06.2017 /2

First Level Event Selection (FLES) Package

2

CA Track Finder

KF Track Fit

Event Builder

KF Particle Finder

Physics Analysis

Event Selection

FLES

OutputMonte-Carlo

Histograms

Efficiency

InputGeometry Measurements

Simulated AuAu collision at 25 AGeV

π+

Κ+

p

Ω+ Λ

Figure 2.4: Reconstruction of an event. The detector planes are visualized in green, particles
are colored depending on their properties and highlighted Ω̄+ → Λ̄K+ → π+p̄K+ decay
chain. [20]

To accomplish the challenge, a high performance algorithm package, the First
Level Event Selection (FLES) [39, 40], is used to select events of interest. This
package includes the Cellular Automaton (CA) based Track Finder, a Kalman Filter
based Track Fitter, an Event Builder, a Kalman Filter based Particle Finder and a
physics analysis, which are all used for event selection (see Figure 2.5). Using FLES,
events of interest can be identified and recorded.

The detector setup has specific geometries, such as distances between the detec-
tors or to the collision target. These have to be provided into the FLES package for
several calculations, e.g. velocity that requires time and distance. Another input to
the package are detector measurements - so called hits.

Since the CBM experiment has not started yet, no real experiment data is used
for this thesis. Instead, generated simulated data is utilized. In case of CBM, there
are two physics models mainly used to generate data: The Parton-Hadron-String
Dynamics (PHSD) [41] model and the Ultra-relativistic Quantum Molecular Dynam-
ics (UrQMD) model [42, 30]. The created generated particles are then processed by
a transport engine (e.g. GEANT4) to simulate the particles flying into the detector
system, including all relevant physics processes such as decays, deflection and in-

11

The CBM Experiment at FAIR
FLES

18

Prof. Dr. Ivan Kisel, Uni-Frankfurt, FIAS, GSI CBM Retreat, 24.06.2017 /2

First Level Event Selection (FLES) Package

2

CA Track Finder

KF Track Fit

Event Builder

KF Particle Finder

Physics Analysis

Event Selection

FLES

OutputMonte-Carlo

Histograms

Efficiency

InputGeometry Measurements

Simulated AuAu collision at 25 AGeV

π+

Κ+

p

Ω+ Λ

Figure 2.5: Flowchart of
the First Level Event Se-
lector (FLES) package that
is used in the CBM exper-
iment to evaluate detector
response data streams in re-
gard to the interest of physi-
cists. [20]

teraction [28]. At this point, the whole event is created, including all decay chains
and trajectories. As a next step, the detector responses are generated, resulting in hits
that would also be produced by real data. Hence, hits based on simulated data are
used instead of hits produced by real experiment data.

Nevertheless, the quality of simulations in any form is evaluated meticulously to
perform as close to real experiment data as possible. This includes the huge amount
of data that has to be processed in real-time [36].

In FLES, in a first step, the provided hits are used to determine possible tracks
of particles with the 4-dimensional (time and space) CA Track Finder [43]. Here,
hits are first connected into segments with all possible matching hits of neighboring
detectors. Then, χ2 cuts are applied on the segments to obtain the most likely track
candidates for respective particles.

Then, an on the Kalman Filter method based algorithm calculates the parameters
of tracks found by the CA Track Finder. For instance, these parameters include
momentum and curvature. This process involves the predicted hit positions based on
the track candidates and the actual hit information by the detector and is called Track
Fitting.

With an interaction rate of 10 MHz, consecutive events will most likely have timely
overlapping hits in the detectors [44, 28]. For a high precision measurement and
reconstruction, it is mandatory to separate registered particles by their corresponding
event. Otherwise, hits of different events lead to wrongly combined tracks. To ensure
accurate event-by-event reconstruction, FLES uses an Event Builder after the Kalman
Filter based Track Fit.

After the tracks per event are reconstructed, the Kalman Filter Particle Finder
package for online selection and reconstruction of short-lived particles is applied
to the tracks [20]. This package provides a reconstruction of particle decays to re-
construct short-lived particles that are not registered by any detector. In this work,
pre-trained neural networks provided by ANN4FLES are applied within this package.
Thus, more details are provided in the following section 2.3.

12

The CBM Experiment at FAIR

Up to this point, the full events are reconstructed and depending on the scientists
interests, events are selected if specific criteria are satisfied. On simulated event data,
reconstructed results are compared to the simulated events, efficiencies are calculated,
and FLES provides histograms for physics- and performance-analysis that are used
for the present thesis.

2.3 Kalman Filter Particle Finder (KFPF)

The Kalman Filter Particle Finder (KFPF) package included in FLES is developed for
online reconstruction and selection of short-lived particles [20]. Based on particle
trajectories - so called tracks - and their respective particles, the algorithm tries to
reconstruct the event, its participating particles and their decays.

In general, KFPF uses many different χ2-tests to select information of higher
quality. Although there is always existing imperfection in measurements (due to finite
detector resolutions) and calculations (due to IEEE-754 inaccuracy), certain values
could obscure any pattern as they have worse quality than others. Then, χ2-tests are
applied to filter low quality information. In a χ2-test, measured values are compared
to an underlying theoretical model or hypothesis. If the statistic for a certain value is
larger than a threshold, it is considered unlikely that the value is consistent with the
model or hypothesis.

In KFPF, the cut values (thresholds) are set individually. For example, some cuts
are set by statistical evidence, whereas at the same time approaches exist to apply
optimized cuts, e.g. by using Boosted Decision Trees [45], another machine learning
technique. However, for KFPF, only tracks that pass certain criteria are selected,
here by means of χ2

fit. Then, χ2
prim is used to separate primary and secondary tracks.

Extrapolated tracks that lead to the primary vertex (within error margin), are classified
as primary-tracks whereas those that intersect in other space-time coordinates are
handled as secondary-tracks (see Figure 2.6).

Particles with trajectories that directly lead to the primary vertex can usually be
considered as long-lived particles, as their lifetime is long enough to interact with
detector materials to produce a signal. In this case, information of detectors can be
used to calculate the particle’s properties, for example, mass and energy. In contrast,
particles that do not lead to the primary vertex are likely to be decay products that are
created in secondary vertices. Here, if a detector close to the primary vertex (such
as MVD) is considered, the particles did not live long enough to reach any detector.
Although there are differences in several orders of magnitude in regard to their life-
time, these particles can be considered as short-lived particles. However, whereas
information of long-lived particles can be measured directly by detector interaction,
short-lived particles can only be measured indirectly, what makes it a challenge to
reconstruct them. But, since primary particles originate from the main collision point,
they provide crucial information about the collision’s properties [46, p. 33]. Con-
trary, secondary particles contain the data necessary to infer properties of short-lived
particles that are created in or close to the primary vertex, providing information

13

The CBM Experiment at FAIR

 Kisel Pavel, GSI, Uni-Frankfurt, JINR CBM Group Meeting, GSI, Darmstadt, 11.11.2016 /11

KF Particle Finder Algorithm

!4

Selected K0
s, Λ and Λ

Tracks
χ2

fit

χ2
prim

Selected K0
s, Λ and Λ

Store

Selected tracks

χ2
geo

checking mass

Secondary Λ and Λ Primary K0
s, Λ and Λ
χ2

topo, zvertex

Primary tracks

K0
s, Λ and Λ candidates

Σ*+, Σ*+, Σ*- and Σ*-, K*0, K*0,
K*- and K*+ candidates

Selected Σ*+, Σ*+, Σ*- and Σ*-,
K*0, K*0, K*- and K*+

χ2
geo , χ2

topo , zvertex

Ξ- , Ξ+, Ω- and Ω+
candidates

Selected
Ξ- , Ξ+, Ω- and Ω+

χ2
geo

Secondary tracks

H-dibaryon
candidates

Selected H

Store

χ2
geo , χ2

topo , zvertex

Selection criteria:
χ2

fit – χ2 given by a track fit
χ2

prim – χ2 distance to a primary vertex (PV)
χ2

geo – χ2 given by a particle fit
χ2

topo – χ2 of a particle fitted to PV

Secondary neutrals
n, π0, Λ, Ξ0, νµ

Σ+/-, Ξ+/-, Ω+/-, K+/-, π+/- Store

Kink

 Kisel Pavel, GSI, Uni Frankfurt, JINR 27th CBM Collaboration Meeting, GSI, Darmstadt, 14.04.2016

Added Decays

!6

(1) Σ- → nπ- das
(2) Σ+ → nπ+ uus

(3) Σ+ → pπ0 uus

(4) Σ̅- → n̅π- d̅d̅s̅

(5) Σ̅+ → n̅π- u̅u̅s̅
(6) Σ̅+ → p̅π0 u̅u̅s̅
(7) Ξ- → Λπ- dss
(8) Ξ̅+ → Λ̅π+ d̅s̅s̅
(9) Ω- → ΛK- sss
(10) Ω̅+→ Λ̅K+ s̅ s̅s̅
(11) Ω- → Ξ0π- sss
(12) Ω̅+→ Ξ̅0π+ s̅ s̅s̅

(13) π+ → µ+νµ ud̅
(14) π- → µ-ν̅µ du̅
(15) K+→ µ+νµ us̅
(16) K- → µ-ν̅µ su̅
(17) K+→ π+π0 us̅
(18) K- → π-π0 su̅

Figure 2.6: Selection scheme of the Kalman Filter Particle Finder (KFPF) package, including
the recently added Missing-Mass method for the reconstruction of neutral particles (yellow).
[21]

about particles of interest. Therefore, both types are relevant for the CBM experiment.

All in all, the KFPF package is capable of more than 150 decay-reconstructions
[21], allowing the analysis of all particles relevant for the CBM experiment. The
decays and decay chains can be seen in Figure 2.7.

14

The CBM Experiment at FAIR

Iv
an

 K
is

el
, U

ni
-F

ra
nk

fu
rt,

 F
IA

S
, G

S
I,

H
FH

F
D

P
G

-2
02

3,
 D

re
sd

en
, 2

3.
03

.2
02

3

 /
34

22

C
B

M
: K

F
P

ar
tic

le
 F

in
de

r f
or

 s
ho

rt-
liv

ed
 P

ar
tic

le
s

H
ea

vy
 F

la
vo

ur O
pe

n-
ch

ar
m

re

so
na

nc
es

D

*0
 →

 D
+
π-

D̅
*0

 →
 D

- π
+

D
*+

 →
 D

0
π+

D
*-

 →
 D̅

0
π-

O
pe

n-
ch

ar
m

pa

rti
cl

es

D
0
→

 K
- π

+

D
0
→

 K
- π

+ π
+ π

-

D
0
→

 K
+ K

-

D
0
→

 π
+
π-

D
0
→

 K
0 s π

+ π
-

D
0
→

 K
+ K

- K
0 s

D
+
→

 K
- π

+ π
+

D
+
→

 π
+ π

+
π-

D
+
→

 K
0 s π

+ π
+
π-

D
+
→

 K
0 s π

+

D
s+ →

 K
+ K

- π
+

D
s+ →

 K
+ π

+
π-

D
s+ →

 K
0 s K

+
π+

 π
-

D
s+ →

 K
0 s K

0 s π
+

D
s+ →

 K
0 s K

+

Λ
c+ →

 p
 K

- π
+

Λ
c+ →

 p
 π

+
π-

Λ
c+ →

 p
 K

0 s

Λ
c+ →

 p
 K

0 s π
+ π

-

Λ
c+ →

 Λ
 π

+

Λ
c+ →

 Λ
 π

+ π
+ π

-

Ξ c
0 →

 Ξ
- π

+ π
+ π

-

+
an

tip
ar

tic
le

s

C
ha

rm
on

iu
m

J/
ψ

 →
 p

p̅
J/
ψ

 →
 Λ
Λ̅

J/
ψ

 →
 Ξ

- Ξ̅
+

ψ′

→

 Ω
- Ω̅

+

B
 m

es
on

s
B

+
→

 D̅
0
π+

B
-
→

 D
0
π-

B
+
→

 D̅
0

K
+

B
-
→

 D
0

K
-

B
0
→

 D
- π

+

B̅
0
→

 D
+
π-

B
0
→

 D
- K

+

B̅
0
→

 D
+

K
-

C
ha

rg
ed

 p
ar

tic
le

s:
 e

± ,
µ±

, π
± ,

K
± ,

p±
, d

± ,
3 H

e±
, 4

H
e±

St
ra

ng
e

pa
rti

cl
es

K
*+

 →
 K

+ π
0

K
*-

 →
 K

- π
0

K
*0

 →
 K

0 π
0

Σ*
0
→

 Λ
 π

0
Σ̅*

0
→

 Λ̅
 π

0

Ξ*
-
→

 Ξ
- π

0

Ξ̅*
+
→

 Ξ̅
+ π

0

Ξ*
0 →

 Ξ
- π

+

Ξ̅*
0 →

 Ξ̅
+ π

-

Ω
*-

 →
 Ξ

- K
- π

+

Ω̅
*+

 →
 Ξ̅

+
K

+
π-

K
*+

 →
 K

0 s π
+

K
*-

 →
 K

0 s π
-

Σ*
+

 →
 Λ

 π
+

Σ̅*
-
→

 Λ̅
 π

-

Σ*
-
→

 Λ
 π

-

Σ̅*
+

 →
 Λ̅

 π
+

Ξ*
-
→

 Λ
 K

-

Ξ̅*
+

 →
 Λ̅

 K
+

K
*0

 →
 K

+
π-

K̅
*0

 →
 K

- π
+

ϕ

→

 K
+ K

-

Λ
*
→

 p
 K

-

Λ̅
*
→

 p̅
 K

+

K
0 s →

 π
+ π

-

K
+ →

 µ
+ ν

µ

K
-
→

 µ
- ν̅

µ

K
+ →

 π
+ π

0

K
-
→

 π
- π

0

Λ

→

 p
 π

-

Λ̅

→

 p̅
 π

+

Σ+

→

 p
 π

0

Σ̅-

→

 p̅
 π

0

Σ+

→

 n
 π

+

Σ̅-

→

 n̅
 π

-

Σ-

→

 n
 π

-

Σ̅+

→

 n̅
 π

+

Ξ-
 →

 Λ
 π

-

Ξ̅+
 →

 Λ̅
 π

+

Ξ-
 →

 Λ
 π

-

Ξ̅+
 →

 Λ̅
 π

+

Ω
- →

 Λ
 K

-

Ω̅
+ →

 Λ̅
 K

+

Ω
- →

 Λ
 K

-

Ω̅
+ →

 Λ̅
 K

+

Ω
- →

 Ξ
0 π

-

Ω̅
+ →

 Ξ̅
0
π+

Σ+
 →

 p
 π

0
Σ̅-

 →
 p̅

 π
0

Σ0
 →

 Λ
 γ

Σ̅0

 →
 Λ̅

 γ

Ξ0
 →

 Λ
 π

0

Ξ̅0
 →

 Λ̅
 π

0

St
ra

ng
e

re
so

na
nc

es

N
eu

tra
l p

ar
tic

le
s:

 ν
µ,
ν̅ µ

, π
0 ,

n,
 n̅

, Λ
, Λ̅

, Ξ
0 ,
Ξ̅0

D
ile

pt
on

s

C
ha

rm
on

iu
m

J/
ψ
→

 e
+ e

-

J/
ψ

 →
 µ

+ µ
-

Lo
w

 m
as

s
ve

ct
or

 m
es

on
s

ρ
 →

 e
+ e

-

ρ
 →

 µ
+ µ

-

ω
 →

 e
+ e

-

ω
 →

 µ
+ µ

-

ϕ
→

 e
+ e

-

ϕ
→

 µ
+ µ

-

G
am

m
a

γ

→

 e
+ e

-

G
am

m
a-

de
ca

ys

π0
 →

 γ
 γ

η
→

 γ
 γ

π+

→

 µ
+ ν

µ

π-

→

 µ
- ν̅

µ

ρ
→

 π
+ π

-

Δ0

→

 p
 π

-

Δ̅0

→

 p̅
 π

+

Δ+
+
→

 p
 π

+

Δ̅-
-
→

 p̅
 π

-

Li
gh

t m
es

on
s

an
d

ba
ry

on
s

H
yp

er
m

at
te

r

H
ea

vy
 m

ul
ti-

st
ra

ng
e

ob
je

ct
s

{Λ
Λ

}
→

 Λ
 p

 π
-

{Ξ
0 Λ

} →
 Λ

 Λ

H
yp

er
nu

cl
ei

{Λ

n}
 →

 d
+
π-

{Λ̅
n̅}

 →
 d

- π
+

{Λ
nn

} →
 t+

 π
-

{Λ̅
n̅n̅

} →
 t-

 π
+

3 Λ
H

→

 3 H
e π

-

3 Λ
H̅

→

 3 H
e π

+

4 Λ
H

→

 4 H
e π

-

4 Λ
H̅

→

 4 H
e π

+

4 Λ
H

e
→

 3 H
e p

 π
-

4 Λ
H

e
→

 3 H
e p̅

 π
+

5 Λ
H

e
→

 4 H
e p

 π
-

5 Λ
H

e
→

 4 H
e p̅

 π
+

D
ou

bl
e-
Λ

hy

pe
rn

uc
le

i
4 Λ
Λ
H

 →
 4 Λ

H
e π

-

4 Λ
Λ
H

 →
 3 Λ

H
 p

 π
-

5 Λ
Λ
H

 →
 5 Λ

H
e π

-

6 Λ
Λ
H

e →
 5 Λ

H
e

p
π+

M
. Z

yz
ak

, P
. K

is
el

Figure 2.7: Decay scheme of particles reconstructed by the Kalman Filter Particle
Finder (KFPF) package. The package is able to reconstruct more than 150 particle de-
cays. The investigated particles in this thesis decay as follows: Ks → π+π− ; Λ → pπ−.
[21]

15

The CBM Experiment at FAIR

2.3.1 Particle Identification in the KFPF

In experiments such as the CBM experiment, the detection of rare, short-lived par-
ticles is crucial for understanding the underlying physics processes. However, the
identification of these particles can be challenging due to the presence of secondary
tracks produced by the decay of particles. The secondary tracks selected by the KFPF
package are produced by decay products, so called daughter particles. Particles
decay for various reasons: The particles are unstable, they collide with other particles
or decay due to interaction with a detector. The decaying particle is called mother
particle and might be a particle of interest, especially if it is a rare short-lived particle.

The KFPF package addresses this challenge by performing a competition among
reconstructed mother particles. This competition involves the creation of all possible
mother particles, followed by the removal of those that do not meet certain criteria.
The criteria used for the competition are based on the properties of the daughter
particles, such as their mass, momentum and direction of flight, and are designed to
select the most likely mother particle.

In a first step, all possible mother particles are created. In a second step, the com-
petition removes all created mother particles, if they do not meet certain criteria. The
competition starts with the initialization of vectors that are used for the competition
(see Listing 2.1). Here, fParticles is a vector including all reconstructed particles.
The best matching mother particle ID is stored in the bestMother vector, whereas
candidates that should be deleted are tagged in deleteCandidate.

1 std@::vector<ParticleInfo> particleInfo;

2 std@::vector<bool> isUsed(fParticles.size());

3 std@::vector<bool> deleteCandidate(fParticles.size());

4 std@::vector<int> bestMother(fParticles.size());

5

6 for (unsigned int iParticle = 0;

7 iParticle < fParticles.size();

8 iParticle@++)

9 {

10 isUsed[iParticle] = false;

11 deleteCandidate[iParticle] = false;

12 bestMother[iParticle] = -1;

13 }

Listing 2.1: Vector initialization within the default mother particle competition in
KFParticleTopoReconstructor@::SelectParticleCandidates() by [47].

After initialization, all particles are first checked if they are considered for the
competition. This is done by UseParticleInCompetition(PDGCode) that returns
true, if the PDG code of the particle matches with listed codes within the method. In
the existing competition, several particles are investigated, the method returns true
for the PDG codes 310 (Ks), 3122 (Λ), and others. Within this method, all other
particles are skipped for the competition processed later on. After that, an iteration
over all reconstructed primary vertices is done and a χ2-cut is applied, to check if
the particle’s production vertex is close to the primary vertex, which in turn would

16

The CBM Experiment at FAIR

indicate that it is a primary particle. All secondary particles are flagged for deletion,
so that only primary particles become selected for competition (see Listing 2.2).

1 for (unsigned int iParticle = 0;

2 iParticle < fParticles.size();

3 iParticle@++)

4 {

5 if (!UseParticleInCompetition(fParticles[iParticle].GetPDG())) continue;

6

7 bool isSecondary = 1;

8

9 for (int iPV = 0; iPV < NPrimaryVertices(); iPV@++) {

10 KFParticle tmp = fParticles[iParticle];

11 tmp.SetProductionVertex(GetPrimVertex(iPV));

12

13 if (tmp.Chi2() / tmp.NDF() < 5) isSecondary = 0;

14 }

15

16 if (isSecondary) deleteCandidate[iParticle] = true;

17 }

Listing 2.2: Removing all secondary-track particles for the mother particle competition
in KFParticleTopoReconstructor@::SelectParticleCandidates() by [47].

The KFPF particle competition only considers primary particles because they
are the initial particles produced in the collision and have not undergone any interac-
tion with the detector material. Primary particles can be accurately measured and
identified by the detector, which makes them a reliable source for reconstructing
mother particles. In contrast, secondary particles, which are produced by the decay
of primary particles, may interact with the detector material and leave only partial or
incomplete information about the properties of the original mother particle. Further-
more, by using only primary particles for the competition, the KFPF package can
improve the accuracy of the reconstructed mother particles and reduce the potential
for misidentifying rare short-lived particles.

Finally, the competition between all primary-particles begins. All particles
flagged for deletion are skipped, as well as all particles that are not listed for the
competition. Then, for each candidate, the absolute mass difference dm1 to the
known mass distribution peak is calculated (Listing 2.3, line 9). After that, all
possible competition opponents are checked: Here, again, if flagged for deletion or
if not selected for competition, they are skipped. For each opponent, the absolute
mass difference dm2 to the opponent’s known mass distribution peak is calculated
(Listing 2.3, line 19). As a next step, daughters are compared because the opponent
should share both daughters. For the decays of Ks and Λ, since both decays raise π−,
the shared daughter is π−. Now, both particles’ mass values are checked if at least
one of them is within the 3σ area around the peak (Listing 2.3, line 22). The final
competition is done by the mass difference to the peak. The particle that is closer to
its own peak, wins the competition, the other one is flagged for deletion (Listing 2.3,
lines 23-32).

17

The CBM Experiment at FAIR

1 for (unsigned int iParticle = 0;

2 iParticle < fParticles.size();

3 iParticle@++)

4 {

5 if (deleteCandidate[iParticle])

6 continue;

7

8 if (!UseParticleInCompetition(fParticles[iParticle].GetPDG()))

9 continue;

10

11

12 float mass, massSigma;

13 fParticles[iParticle].GetMass(mass, massSigma);

14 float massPDG, massPDGSigma;

15 KFParticleDatabase@::Instance()->GetMotherMass(fParticles[iParticle].

↪→ GetPDG(), massPDG, massPDGSigma);

16 float dm1 = fabs(mass - massPDG) / massPDGSigma;

17

18 for (unsigned int jParticle = iParticle + 1;

19 jParticle < fParticles.size();

20 jParticle@++)

21 {

22 if (deleteCandidate[jParticle])

23 continue;

24

25 if (!UseParticleInCompetition(fParticles[jParticle].GetPDG()))

26 continue;

27

28

29 fParticles[jParticle].GetMass(mass, massSigma);

30 KFParticleDatabase@::Instance()->GetMotherMass(fParticles[jParticle].

↪→ GetPDG(), massPDG, massPDGSigma);

31 float dm2 = fabs(mass - massPDG) / massPDGSigma;

32 if (!(fParticles[iParticle].DaughterIds()[0] @== fParticles[jParticle].

↪→ DaughterIds()[0] @&& fParticles[iParticle].DaughterIds()[1] @==

↪→ fParticles[jParticle].DaughterIds()[1]))

33 continue;

34

35 if (dm1 < 3.f @|| dm2 < 3.f) {

36 if (dm1 < dm2) {

37 deleteCandidate[jParticle] = true;

38 bestMother[fParticles[iParticle].DaughterIds()[0]] = iParticle;

39 bestMother[fParticles[iParticle].DaughterIds()[1]] = iParticle;

40 }

41 else {

42 deleteCandidate[iParticle] = true;

43 bestMother[fParticles[iParticle].DaughterIds()[0]] = jParticle;

44 bestMother[fParticles[iParticle].DaughterIds()[1]] = jParticle;

45 break;

46 }

47 }

48 }

49 }

Listing 2.3: Particle competition of primary-particle candidates with shared daughters
in KFParticleTopoReconstructor@::SelectParticleCandidates() by [47].

18

The CBM Experiment at FAIR

After that part of the competition where Ks and Λ are cleaned as described, the
existing competition includes further clean-up methods, for instance, for γ-decays.
Since the presented neural networks will not perform the following clean-ups, the
source code and procedure is not important in detail. However, they will place a role
in evaluating the results.

2.3.2 Performance Measurements in the KFPF
As mentioned before, Ks-mesons and Λ-hyperons are investigated in particular. To
measure the performance of all competition approaches, KFPF provides several plots.
In this thesis, the histograms for mass distributions of total spectra, signal, back-
ground and ghosts are used. In these histograms, the x-axis represents the mass bins
in GeV/c2, and the y-axis shows the number of entries per mass bin. Generally, the
relative differences are evaluated, as there are usually more Λ occurrences compared
to Ks, but both particles should be identified with the same good quality.

All particles that are reconstructed correctly, are known as signal. Particles
that were misclassified contribute to noise in the signal of other particles, which
is called background. Furthermore, some particles that are reconstructed did not
exist in the generated data — these are called ghosts. Since there are always small
inaccuracies in calculations or measurements due to finite detector resolutions, the
results will most likely never be flawless. Nevertheless, algorithm packages are devel-
oped to perform as well as possible to provide physicists high quality physics analysis.

Beside the already mentioned histograms, the signal-background ratio, signifi-
cance and Armenteros-Podolanski plots are analyzed. The Armenteros-Podolanski
plots are 3-dimensional scatter plots, where the color of a bin visualizes the number of
entries like a heat-map, the x-axis represents the longitudinal momentum asymmetry
α, y-axis the transverse momentum pt of the oppositely charged decay products [48].
The longitudinal momentum asymmetry α is a measure of the difference in momen-
tum of two daughter particles along the direction of the mother particle’s momentum,
divided by the sum of their momenta. Thus, α = (p+L − p−L)/(p

+
L + p−L), where p+L

and p−L are the longitudinal momenta of daughters. The transversal momentum refers
to the momentum component of particles perpendicular to the direction of the beam
axis.

The signal-background ratio (S/B-ratio) provides an indicator for the propor-
tions of signal in comparison to background. A S/B-ratio of 1 indicates that for
the investigated spectra, the number of background entries is as large as the signal
entries. Obviously, such a low S/B-ratio should be avoided. The significance S/

√
S/B

measures the peak produced by the signal in comparison to the fluctuations in the
background. In general, this is an important indicator in the analysis, since new
particles might be hidden in the background. A significance of 1 indicates that the
signal is not distinguishable compared to the background, whereas a significance
of 5 is considered as a threshold that the signal is likely to be a real signal, and not
produced by background fluctuations. Λ and Ks, however, are well studied. Their
peaks are known, and the algorithms are already well performing on finding them.
Hence, their significance values will be clearly higher even without competition.

19

The CBM Experiment at FAIR

The selected histograms and ratios should be sufficient to perform an evaluation
of the presented approaches.

2.3.3 KFPF Performance: Existing Competition
For the existing method, a data set consisting of 13k events was used to evaluate the
results. It is the same data set that will later be used to evaluate the performance of
ANN4FLES within KFPF, to make the results as comparable as possible.

In Figure 2.8, one can see the total spectra results of the KFPF package for Ks and
Λ without any competition (black) compared to the results with the already existing
competition (green). It is shown in both cases, Ks and Λ, that the general amount
of entries per mass bin is reduced significantly in the area beside the peaks. In this
area, many particles survive other χ2 cuts applied in KFPF, suggesting that these
reconstructed particles are candidates for Ks and Λ. However, using the competition,
one can see that many of these particles do not survive in a direct competition with
another particle that matches similar criteria. Here, one of the particles is chosen as
the best matching Ks or Λ and the other particle is rejected, what finally reduces the
amount of falsely assumed Ks or Λ particles.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
]2m [GeV/c

0

1000

2000

3000

4000

5000

Ks M

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
]2m [GeV/c

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Lambda M

Figure 2.8: Histograms of total spectra for Ks and Λ masses. Comparison of existing mother
particle competition (green) and no competition (black).

Investigating the signal histograms in Figure 2.9, in both cases a slight reduction
of signal is indicated, using the competition. For Λ and Ks, that suggests that the
competition not only rejects background particles, but in some cases signal particles
are rejected by the competition as well. If not using any competition, these particles
would not be rejected, but neither the background producing particles would be.
However, the rejection of signal seems negligible in relation to the reduction of
background.

Figure 2.10 confirms that the background is reduced by a huge amount, as these
histograms show only the background. It is clearly visible that around the known
mass of Ks (PDG mass 0.493GeV/c2) and Λ (PDG mass 1.116GeV/c2), the default
competition has problems to identify background, as it is based on the comparison of
mass distances to the peak. Therefore, for two particles that are both close to the peak,
it is hard to distinguish the best matching mother particle based only on their peak
distance, which leads to falsely selected mother particles. In case of Ks this problem
seems worse, as the amount of entries in the background peak for the existing method

20

The CBM Experiment at FAIR

0.46 0.48 0.5 0.52 0.54
]2m [GeV/c

0

500

1000

1500

2000

2500

3000

Ks/Signal M

1.08 1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16
]2m [GeV/c

0

2000

4000

6000

8000

10000

12000

14000

16000

Lambda/Signal M

Figure 2.9: Histograms of signals for Ks and Λ masses. Comparison of existing mother
particle competition (green) and no competition (black).

is almost as large as without competition. However, in general, the existing method
improves the physics analysis quality by reducing background significantly.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
]2m [GeV/c

0

50

100

150

200

250

300

350

Ks/Background M

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
]2m [GeV/c

0

20

40

60

80

100

120

140

160

Lambda/Background M

Figure 2.10: Histograms of background for Ks and Λ masses. Comparison of existing
mother particle competition (green) and no competition (black).

In the ghost histogram (see Figure 2.11), it is shown that several ghost particles
are partially responsible for the peak in the background after the competition, as
they also show a peak around the PDG mass of Ks and Λ. However, in general,
the competition reduces the number of ghosts significantly, therefore many mother
particles that actually do not exist are removed by the competition, as they are not
able to survive it. This behavior is expected, since all possible mother candidates are
created first, and without competition, they are kept and all but one become ghosts,
and therefore background.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
]2m [GeV/c

0

200

400

600

800

1000

1200

1400

1600

1800

Ks/Ghost M

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
]2m [GeV/c

0

500

1000

1500

2000

2500

Lambda/Ghost M

Figure 2.11: Histograms of ghosts for Ks and Λ masses. Comparison of existing mother
particle competition (green) and no competition (black).

In Figure 2.12, the Armenteros-Podolanski plots are shown for Ks. On the left

21

The CBM Experiment at FAIR

side, the plot is created without competition and two patterns are clearly visible. An
arch (= Ks) over a large range of α within transverse momenta of 0.1GeV/c and
0.2GeV/c. On the other hand, even more entries per bin illustrate another arch (= Λ)
at α between 0.5 and approximately 0.82 with transverse momenta below 0.1GeV/c.
In the right plot, after the competition, the smaller arch is blurred out with a smaller
amount of entries, whereas the wide arch is visible more clearly. Overall, the number
of entries is more than halved. All together, it suggests that the competition removed
background significantly, visualizing the wider arch of Ks more clearly, whereas
many background entries in the range of Λ and the other blue areas were removed.

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
)-

L
+p+

L
)/(p-

L
-p+

L
 (pα

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 [G
eV

/c
]

tq

Armenteros
Entries 821189
Mean x 0.2766
Mean y 0.1592
Std Dev x 0.5289
Std Dev y 0.1166

0

1000

2000

3000

4000

5000

6000Armenteros
Entries 821189
Mean x 0.2766
Mean y 0.1592
Std Dev x 0.5289
Std Dev y 0.1166

Ks Armenteros

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
)-

L
+p+

L
)/(p-

L
-p+

L
 (pα

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 [G
eV

/c
]

tq

Armenteros
Entries 315246
Mean x 0.1854
Mean y 0.1586
Std Dev x 0.5481
Std Dev y 0.1236

0

100

200

300

400

500

600

700

800
Armenteros

Entries 315246
Mean x 0.1854
Mean y 0.1586
Std Dev x 0.5481
Std Dev y 0.1236

Ks Armenteros

Figure 2.12: Armenteros-Podolanski plots with total spectra for Ks without (left) and with
competiton (right).

For Λ (see Figure 2.13). The left plot without competition looks similar to the
corresponding Armenteros-Podolanski plot of Ks. That suggests that both particles
interact as background in the respective other particle’s spectrum. Here, using com-
petition, the arch of Λ is visible more clearly, whereas the arch of Ks has become
invisible within the general background of Λ (blue area). It indicates that the back-
ground produced by Ks in the spectrum of Λ is reduced significantly by the existing
competition.

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
)-

L
+p+

L
)/(p-

L
-p+

L
 (pα

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 [G
eV

/c
]

tq

Armenteros
Entries 821189
Mean x 0.2766
Mean y 0.1592
Std Dev x 0.5289
Std Dev y 0.1166

0

1000

2000

3000

4000

5000

6000Armenteros
Entries 821189
Mean x 0.2766
Mean y 0.1592
Std Dev x 0.5289
Std Dev y 0.1166

Lambda Armenteros

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
)-

L
+p+

L
)/(p-

L
-p+

L
 (pα

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 [G
eV

/c
]

tq

Armenteros
Entries 337434
Mean x 0.289
Mean y 0.1437
Std Dev x 0.5302
Std Dev y 0.1227

0

500

1000

1500

2000

2500

3000

3500

4000

4500Armenteros
Entries 337434
Mean x 0.289
Mean y 0.1437
Std Dev x 0.5302
Std Dev y 0.1227

Lambda Armenteros

Figure 2.13: Armenteros-Podolanski plots for Λ without (left) and with competiton (right).

In general, the distribution visualized in the Armenteros-Podolanski plots can
be explained by the decay products of the respective particles. The decay products
of Ks are π+ and π−, both pions with the same mass but different charge. Since
their mass is equally distributed when Ks decays, their momenta are also distributed
symmetrically on average [23]. Therefore, they produce a symmetric arch in range
α = −0.8 to α = 0.8. For Λ, however, the decay into proton p and pion π− creates
two daughter particles with different masses. Since the proton’s mass is larger, on
average it takes a larger part of the momentum compared to pion. Therefore, Λ’s arch

22

The CBM Experiment at FAIR

is placed on the right side of the plot.

Whereas all of these histograms and plots already indicate the performance of the
competition, there are two ratios that have to be discussed: signal-background ratio
and significance. In Figure 2.14, histograms of invariant masses for Ks = π+π− and
Λ = pπ− are shown. Both histograms show clearly the peaks of Ks and Λ centered
at their known mass value.

The signal-background ratio for Ks of 1.08 suggests, that the amount of signal is
almost as large as the amount of background, even though the background is usually
distributed at larger distances from the peak. However, this amount of background
will have negative impact on physics analysis and should be generally avoided. In
case of Λ, the S/B ratio is better, as the amount of signal compared to background is
approximately 3.56 times larger. This suggests that Λ is easier to separate from other
particles than Ks.

The significance is a ratio to measure the peak-size compared to the fluctuation
in the background. Both significance values are by far larger than 5 and, hence, one
can argue with certainty that the peaks created by signal are different compared to
the smaller peaks created by background fluctuation. A significance larger than 5
is considered as a true signal peak that can not be disregarded. In the case of Ks,
without competition, the significance is 115 and forΛ 200, indicating that both signals
are considered very unlikely to be produced by background fluctuation. Even without
competition, the signals are clearly visible.

0.5 0.6
]2 [GeV/c-π+π invm

0

5000E
nt

ri
es

-π+π→SK

2 = 3.4 MeV/cσ SK

 = 115S+BS/B = 1.08 S/

1.1 1.15
]2 [GeV/c-π pinvm

0

10000

20000

E
nt

ri
es

-πp→Λ

2 = 1.4 MeV/cσ Λ

 = 200S+BS/B = 3.56 S/

Figure 2.14: Invariant mass distributions of Ks = π+π− and Λ = pπ− for KFPF without
competition, including signal-background ratio and significance.

In Figure 2.15, the same plots are visualized, but after the competition. In both
cases, the signal-background ratio is more than doubled. That confirms, that the
competition rejected more background particles than rejecting signal particles. Here,
the significance is also increased by approximately 30% in case of Ks and 6% in case
of Λ. Both are indicating that the competition in general improves the performance
of the KFPF package in regard to offering high quality data for physics analysis.

Summarized, the existing competition can be considered as a well-performing
approach to reduce the background of Ks and Λ respectively. However, in the
presented analysis, no other particles are considered. While the existing competition
has been shown to be effective in reducing the background of Ks and Λ, the inclusion

23

The CBM Experiment at FAIR

0.5 0.6
]2 [GeV/c-π+π invm

0

2000

4000E
nt

ri
es

-π+π→SK

2 = 3.8 MeV/cσ SK

 = 149S+BS/B = 3.58 S/

1.1 1.15
]2 [GeV/c-π pinvm

0

10000

20000

E
nt

ri
es

-πp→Λ

2 = 1.4 MeV/cσ Λ

 = 213S+BS/B = 8.06 S/

Figure 2.15: Invariant mass distributions of Ks = π+π− and Λ = pπ− for KFPF with
existing competition, including signal-background ratio and significance.

of other particles may lead to a more comprehensive and accurate evaluation of the
competition’s performance. By considering a wider range of particles, it may be
possible to identify potential limitations in the competition that were not detected
in this work. Nevertheless, if Ks and Λ are the particles of interest, the quality of
physics analysis can be improved by enabling the competition.

24

Neural Networks and Deep Learning

Chapter 3

Neural Networks and Deep Learning

In recent years, the application of artificial neural networks has become very popular
to solve tasks, especially in the areas of regression or classification problems. On
the one hand, the hardware has become better and especially the fast and parallel
tensor calculations on Graphical Processing Units (GPUs) make them very attractive
to utilize. Furthermore, state of the art GPUs also include units that are designed for
neural network calculations, since they are used to improve graphical performances
of the graphics card itself (e.g. NVidia RTX with DLSS [49]). In non-private usages
for workstations, there are GPUs (e.g. NVidia RTX A6000 [50]) designed in a way
to increase the performance of ML algorithms even further by taking advantage of
high performance tensor cores and GPU links that connect GPUs efficiently for more
throughput. On the other hand, algorithms and the understanding of machine learning
improved over time.

In Machine Learning (ML), a subset of artificial intelligence, there are several
models to provide computers the ability to learn. Algorithms are used to allow com-
puters to learn specific tasks by updating a set of parameters based on the machine’s
decisions or predictions, without explicitly programming the solution. A famous
model is the Artificial Neural Network (ANN) or often called Neural Network (NN):
A set of algorithms combined to mimic a biological brain and its learning abilities
based on mathematical rules.

Nowadays, Multi-Layer Perceptrons (MLPs) are often referred to as Neural Net-
work, since the connected layers build a network of linked vertices that model a brain’s
synapses and neurons. However, (Artificial) Neural Network is a more general ter-
minology why it is often used to describe both: a Multi-Layer Perceptron which
tends to have a small amount of hidden layers and deeper Neural Networks, including
ones with extensions such as for example convolution- or pooling-layers. In general,
however, the training of a neural network should be seen more as a approximation
function optimization, rather than a brain simulation [51].

Contrary to the commonly flat MLPs, the training of deep neural networks con-
taining many layers is referred to as Deep Learning (DL). Hence, DL is a subset
of neural networks. Whereas the exact amount of layers for a deep network is not
specified, usually more than two hidden layers are considered deep, but the amount
may exceed even more than 1,000 layers - depending on the use case [52]. The
depth of a neural network usually includes all layers, and therefore, for example in

25

Neural Networks and Deep Learning

a Convolutional Neural Network, the convolution- and pooling-layers are counted too.

In 2016, Goodfellow [51, p. 167] described a Neural Network as a function
composition, where each layer is described as a mathematical function.

N(x) = N (n−1)(N (n−2)(...(N (0)(x))...)) (3.1)

Supposing regulations such as activation functions, dropout and batch normal-
ization as layers, this definition allows the description of many - if not all - neural
networks. However, it is considered uncommon to count regulations into the net-
work’s depth. Nevertheless, using this definition, we can define a neural network and
its behavior by the definition of each sub-function N (i).

In fact, this definition describes well what a neural network does: approximating a
mathematical function. The network’s weights are trained for statistical generalization.
Starting with a random1 initialization of weights, the network begins in an underfitted
state. Any input results in a random output, based on the initialized weights. During
training, after each input instance, the network adjusts its neuron’s connections in
such a manner, that for the given input, the inferred output is closer to the correct
result than before. The more examples to train the network exist, the more general
the learned features of the input data are.

3.1 Perceptron: The Smallest Neural Network

The probably most fundamental concept of neural networks, the Perceptron, was
presented by Rosenblatt [53] in 1957. Although this first model was criticized for not
being able to solve XOR, a simple logical gate for an exclusive disjunction, it builds
the foundation of modern neural networks. Whereas the XOR-problem itself was
actually a direct consequence of the problem of linear separability, it was proven in
1986 that a Multi-Layer Perceptron (MLP) is capable of solving non-linear problems,
and therefore the XOR-problem [54].

In a perceptron, the neuron’s output is defined by the weighted sum of inputs plus
a bias value. Thus, using the definition by Goodfellow, we can describe a simple
perceptron by

N(x) = N (0)(x) (3.2)

= b+
n−1∑
0

wi,jxi (3.3)

If the output value is larger than 0, the neuron is active and fires, otherwise it is
inactive. The bias value b is a parameter independent of the input, but also learned
during training and therefore adjusted similar to the weights wi. The optimal slope
to infer the classes correctly can be learned by adjusting weights, whereas the bias
allows to shift the output.

1Randomness is crucial for breaking symmetry in weight updates. Otherwise, the network is not
able to learn correctly.

26

Neural Networks and Deep Learning

3.1.1 Problem of Linear Separability
Generally, the more complex the architecture is, the harder it is to bring all parameters
(most likely weights) in harmony to solve the task efficiently. From another point of
view, some problems require more complex models to be solved at all. One of the
problems that can occur with models that are too simple is the linear separability. In
a classification task of c classes, the network learns up to (c− 1)-many hyperplanes
in the c-dimensional output space that separate areas corresponding to each class.
An inferred output will then end up in one of these areas and as a consequence the
corresponding class is predicted.

The OR-problem is linear separable, and therefore solvable by a simple single-
layer perceptron with 2 input values and 1 output value. The task: Given a binary
vector x ∈ {0, 1}2, return 1 if at least one of both values is 1, 0 otherwise. The
respective perceptron’s function can be described as:

N(x) = w0xi + w1x1 + b (3.4)

with weights wi, bias value b and input values xi.

One could easily argue that for w0 = w1 = 1 and b = −0.5, output N(x) = −0.5
is only possible if x0 = x1 = 0. In all other cases, N(x) ≥ 0.5. Asking if N(x) > 0
and therefore if the neuron fires, we have solved the problem. The 2-dimensional
hyperplane (here line) that is now separating the two classes (0, 1), can be written as:

N(x) !
= 0 (3.5)

w0x0 + w1x1 + b
!
= 0 (3.6)

1 · x0 + 1 · x1 − 0.5
!
= 0 (3.7)

x0 = −x1 + 0.5 (3.8)

0 1
x_1

0

1

x_
0

 (0,0)

 (1,0)

 (0,1)

 (1,1) Figure 3.1: Visualization of the 2-
dimensional hyperplane in red (Equation 3.8),
separating the two classes 0 (blue area) and 1
(green area). Input pairs (1, 0), (0, 1), (1, 1)
are cases where logical x1 ∨ x2 should
return 1. All these cases are above the red
classification line. Pair (0, 0) case should
return 0 and is located below the line.
Therefore, all possible cases are classified
correctly.

On the other hand, the XOR-problem is probably the most famous problem that
is not solvable using a simple perceptron as defined before (Equation 3.4), as the
solution is not linear separable, even if the problem itself is solved simply using
other hardware or software solutions. The task: Given a binary vector x ∈ {0, 1}2,
return 1 if x0 6= x1, 0 otherwise. As we have seen before, the simple perceptron in
Equation 3.4 is capable of learning a movable line. The cases, however, have changed

27

Neural Networks and Deep Learning

such that (0, 0) and (1, 1) should both return 0, (1, 0) and (0, 1) output 1. Figure 3.1
illustrates, that it is not possible to separate both areas on the opposite sites of the
plot (bottom left and top right), from the mid-cases (top left and bottom right) with a
single line. The so called problem of linear separability.

3.2 Multi-Layer Perceptron: Breaking Linearity

As mentioned before, the Multi-Layer Perceptron (MLP) is able to solve the XOR
problem by adding layers and non-linear activation functions; allowing to separate the
outputs using multidimensional equations. Without non-linear activation functions,
the whole MLP would remain a linear function. Hence, it would be possible to
transform it into a single-layer perceptron [51, p. 171]. Applying an activation
function N (1) = ϕ to our neuron’s output, the extended perceptron can be described
as:

N(x) = N (1)(N (0)(x)) (3.9)

= ϕ

(
b+

n−1∑
0

wi,jxi

)
(3.10)

In this way, all neurons of a following layer can be calculated with their own related
set of weights. As Figure 3.2 illustrates, using hidden units in a MLP, the following
layer might be also connected to all neurons of another following layer, resulting
again in weighted sums of the hidden layer neurons’ outputs, activated afterwards.
This can be repeated for arbitrary architectures, resulting in a more complex function
N(x).

x1

x2

x3

x4

N(x)

Input Layer Hidden Layer Output Layer

Figure 3.2: Illustration of a Multi-Layer Perceptron (MLP) with 4 input neurons forming
the input layer (green), 5 neurons building one hidden layer (blue), and 1 output neuron in
the output layer (yellow).

28

Neural Networks and Deep Learning

In classifiers, the output layer is often activated by either Logistic Sigmoid2 or
Softmax, depending on the number of classes classified. Both activation functions
limit the neuron’s output to a value between [0, 1]. In case of binary classification
with a single neuron output layer, Logistic Sigmoid is chosen:

ϕ(x) = σ(x) =
1

1 + exp(−x)

This function provides a smooth transition between 0 and 1 with σ(0) = 0.5. Further,
Sigmoid is converging to 1 for larger positive values and to 0 for larger negative values
(see Figure 3.3). Compared to ArcTan, Logistic Sigmoid converges faster, whereas
compared to TanH, Logistic Sigmoid converges slower, resulting in a sweet spot.
Furthermore, it allows to interpret uncertainty in the classification visible directly
by having output values3 not equal to 0 or 1 but in between, whereas a classification
with certainty is shown by output 0 or 1.

5 4 3 2 1 0 1 2 3 4 5
Input

0

1

Ou
tp

ut

Logistic Sigmoid Function

Figure 3.3: Plot of the Sigmoid activation
function σ(x) = 1

1+exp(−x) . In binary clas-
sification tasks, this function is often in use
when the output layer consists of a single neu-
ron, inferring the class by output ≈ 0 or out-
put ≈ 1 respectively. Within x ∈ [−5,+5],
uncertainty can be represented clearly in the
neuron’s output.

In n-class classification tasks, on the other hand, softmax is the way to go:

Si(x) =
exp(xi)∑n−1
j=0 exp(xj)

This function is applied to the whole layer instead of a single neuron and does not
only limit all neuron’s values between [0, 1], but also limits the sum of all neurons to
1. Hence, one can interpret the output of a softmax activated layer as a probability
distribution that reflects the likelihood of classes based on the given input.

3.3 Network Regularization Methods
Activation functions have a direct impact on the training results. First of all, they
should be continuously differentiable everywhere in their domain. This requirement
is a direct consequence of how learning rules for neural networks are defined. To
update the network’s parameters accordingly to the respective error thrown by a given

2Other Sigmoid functions are also valid, but the converging behavior and output space of Logistic
Sigmoid makes it often the preferred choice.

3By definition, a converging function approaches, but never actually reaches the value it is con-
verging to. However, in context of computer science, due to rounding errors using IEEE-754, the
concept of ‘‘infinitely close’’ does not exist.

29

Neural Networks and Deep Learning

input, gradients are crucial, which are in fact calculated with the activation function’s
derivation.

Besides that, activation functions can lead to unexpected behavior. The Rectified
Linear Unit (ReLU) function, is defined by

ReLU(x) = max(0, x) (3.11)

This function suppresses negative values, for positive values it behaves like the identity
function f(x) = x. Although the derivative ReLU′(0) is undefined, the function is
one of the popular ones for hidden layer activation, used by several architectures
[55, 56, 57]. For gradient calculation, ReLU′(0) = 0 is reasonable, as ReLU(0) = 0
and therefore the neuron would not have any impact to the following layers and the final
result, therefore any weight update is unexpected anyway. However, ReLU provides
non-saturating positive values and therefore can lead to better learning performance
than sigmoid functions in the hidden layers that are limited in their output range. The
problem with ReLU is, that it might lead to dead neurons: Assuming the input to a
ReLU neuron is always negative, or a large bias neuron is dragging the neuron’s value
into negative range, its derivative value is always 0, and hence, there are no weight
updates for this neuron [58]. In fact, the neuron has no impact and is considered
dead. A possible solution for that problem is Leaky ReLU, that works similar but
with a negative slope and a non-zero derivation everywhere4 in its domain, avoiding
neurons that are not trained entirely.

However, in general, activation functions are depending on the network’s input
and use case. ReLU, for example, was investigated and compared to several modified
ReLU-functions, such as Leaky ReLU or Parametric ReLU, that can avoid neuron’s
inactivity. There, it was shown that negative non-zero variants of ReLU performed
better [59]. In the present thesis, LReLU activation is used for hidden layers. Nev-
ertheless, activation functions still belong to ongoing research in the field of Deep
Learning [60] and newer activation functions are discovered continuously, such as
Swish [61] and P-Swish [62].

5 4 3 2 1 0 1 2 3 4 5
Input

1

0

1

2

3

4

5

Ou
tp

ut

Comparison of Activation Functions
ReLU
LeakyReLU
Swish

Figure 3.4: Visualizations of ReLU-, LReLU-
and Swish-function, which are popular for
hidden layer activation.

Beside activation functions, other regularization techniques are often in use. The
most important methods are dropout, batch normalization, early stopping, as well
as L1- and L2-regularization. Most of these regulators try to avoid a major learning
problem: overfitting [63]. A neural network that is not or only weakly trained can be

4Assuming LReLU′(0) 6= 0 by implementation.

30

Neural Networks and Deep Learning

considered as underfitted, because its parameters are not tuned enough to provide
a function approximation that models the data accurately. Contrary, a network that
is trained too strongly on a specific data set, it is considered as overfitted. On the
one hand, repetitions in training increase the accuracy of the training data set, since
each instance of input adjusts the parameters such that next time it is provided to the
network it will be recognized better. However, repeating the process too often will
generally lead to a loss of generality. The network will then begin to train features of
the data that are only specific for the training data set, but should not be considered
as important when classifying the data in general - this is often referred to as learning
noise [63, 64].

Using dropout, neurons are randomly disabled during training (see Figure 3.5)
whereas other neurons are scaled up [65]. The probability to disable a neuron is
a hyper-parameter that can be set in many neural network implementations. The
up-scaling factor for active neurons is then set anti-proportional to the probability
of dropping p: usually 1/(1− p). In this way, neurons are trained randomly, such
that each neuron will learn different features to reduce co-adaption, and therefore,
overfitting [65]. The technique can be applied layer-wise, dropped neurons are usually
selected per instance or per mini-batch of data.

Figure 3.5: Visualization of dropout. On the left side, a standard fully connected neural
network with two hidden layers is shown. On the right side, the network’s state after applying
dropout in the input- and hidden-layers is shown. Crossed neurons are dropped. [65]

Early-stopping is a technique that in fact stops the training, when the network
starts to overfit [66]. An indicator for overfitting is the accuracy and loss of the
validation (or test) set. Here, unseen data is used, and therefore it provides insights in
the network’s performance on general data. A decreasing accuracy or rising loss for
the validation (test) set usually indicates that the network starts to learn the noise of
training data. Then, early stopping can help to stop the training and keep the network
in a state where generality is given. Depending on the exact implementation, one
could reset the network to the best-performing state.

The regulators L1 and L2, also called lasso [67] and ridge [68], add a penalty to
the weights. In particular, L1-regularization penalizes the absolute value of weights,
such that some weights will be set to 0, removing a connection within the network over

31

Neural Networks and Deep Learning

time. This, in fact, reduces the model’s complexity and can therefore help to avoid
overfitting. The regulator L2 penalizes the squared values of weights, encouraging
the network to learn smaller weights, and thus, also reducing the model’s complexity
to avoid overfitting.

The idea of batch normalization is that the data is normalized over the batch for
each layer, such that the data that is flowing through the network is more similar
in values, which can increase the training process drastically [69]. Whereas the
other mentioned techniques are implemented in particular to reduce overfitting,
batch normalization is primarily used to provide a fast training process in deep
neural networks. Nevertheless, batch normalization can help to avoid overfitting,
because it improves generalization [70]. However, the exact reasoning why batch
normalization is effective is not studied entirely yet and still an ongoing research
topic [71]. Furthermore, although batch normalization is assumed to offer several
positive aspects for neural network training, it is considered to perform worse when
applying it together with dropout [72].

Summarized, there are many techniques to increase a network’s performance by
regularization. It is a challenging task to find a set of techniques that suit to solve a
specific problem, thus providing high accuracy classification results without losing
generality. Since there is no simple rule of thumb to achieve the best results, finding
a suiting network architecture requires experience and testing.

3.4 Learning Paradigms of Machine Learning
In ML, there are three major learning paradigms which also apply for neural networks:
supervised learning, unsupervised learning or reinforcement learning are selected
depending on the network application.

In supervised learning, at least during training phase, the exact true outcome of
a given input has to be known such that the machine is able to learn based on an
accurate feedback. One is able to calculate the network’s error directly based on its
inferred output compared to the expected true results. Therefore, small mistakes can
be handled by slight adjustments whereas large errors may lead to heavier changes
within the parameters - usually allowing a fast learning process.

This might be a good approach to classify images where the result is clear, but
imagine a robotic hand trying to grab a pencil. It is a non-trivial task to describe
how wrong a grab attempt is, but it is quite simple to tell if a grab was successful or
not. This is the area of reinforcement learning, where the true output is somehow
describable in the form of yes/no or good/bad feedback. Based on this, one can
not calculate exact errors as it is done in supervised learning, but one can roughly
evaluate the network’s output such that it is able to update its parameters accordingly.
In reinforcement learning, it is quite possible that the training and inference phase
are overlapping or never ending. For instance, the set of possible grasps might be
infinite, such that the robotic hand’s network can learn of every try - even while it is
already in use. This can be done if the feedback can be calculated automatically, for
example if sensors recognize the robotic hand is holding an object and a camera is
used to identify the correct object by some deterministic approach (e.g. QR-Code)
or another neural network.

The area of unsupervised learning is a solution for problems where one is unable
to provide any feedback, because either the true output is unknown or it is too hard

32

Neural Networks and Deep Learning

to describe. In this case, the network tries to learn based on the input data only.
Self-organizing maps are such neural networks that try to figure out which parts of
input data do or do not correlate to other parts of input data. For example, analyzing
texts about nature these maps could recognize that water, fish and whale often
appear together, which strengthens their respective nodes’ connections (weights).
As a result, the large weights pull the nodes of water, fish and whale together and
places them in the same area on the map, whereas some other terms such as desert
have a weak connection and are placed far away.

In this thesis, for the training of neural networks, simulated data is used and
therefore the true outcomes are known (supervised learning). Due to the high quality
of today’s event simulations, possibilities are investigated to apply these pre-trained
networks to real data in the future. But their performance has to be analyzed carefully:
the exact outcomes of real particle collisions are unknown to a great extent and,
therefore, errors can most likely be found during training only.

3.5 Supervised Learning: Neural Network Training
For supervised neural network training, the data set is divided into two or three data
sets, depending on the approach. All approaches use a training data set to train
the network’s parameters (weights) accordingly to approximate the desired func-
tion. Then, a test set is used to evaluate the network’s performance on unseen data
that is not used during training. Sometimes, a third validation set is used to tune
hyper-parameters, such as learning rate or dropout rate. In this thesis three data sets
are used, training, validation and testing. A single training- and validation-phase is
summarized as an epoch, which is repeated several times. The number of epochs is
set as hyper-parameter.

The training of a neural network is an iterative adjustment of weights. The
definition of Goodfellow, assuming a neural network is a function composition,
where each layer is described as a mathematical function, is suitable to explain how
this is done in neural networks:

N(x) = N (n−1)(N (n−2)(...(N (0)(x))...)) (3.12)

In the simplest case, the input tensor x contains one instance of input data of the
training data set at a time, resulting in a single output tensor y. To train the network,
the task is either to minimize the loss (sometimes error, costs) which is represented
by a loss (error, cost) function, or to maximize the likelihood, that can also be defined
by a function. Since a variant of gradient descent is used in the present work, the
focus is set to minimizing the loss. Using gradient descent, the challenge is to find
the global minimum for the loss function. However, finding the global minimum is a
challenging task and in many cases a local minimum is sufficient for high accuracy5

in the validation set. Further, since usually not all possible data can be provided for

5In classification, accuracy is defined as A = TP+TN
TP+TN+FP+FN for TP=True Positives, TN=True

Negatives, FP=False Positives, FN=False Negatives. It is an important criterion to measure the
classification performance of a neural network.

33

Neural Networks and Deep Learning

training, finding the global minima might not be possible at all, due to the lack of
freedom when moving in the output space.

The training is done by an algorithm called backpropagation, that uses an opti-
mizer, such as standard gradient descent, with a learning rate η to calculate the new
weights for each connection after evaluating the inference of an input instance and
comparing it with the target value — the true outcome. For a better understanding,
one could imagine that gradient descent tries to find a way downhill into a minima,
e.g. in R3, and depending on the step size (learning rate) and the starting position
(current weights plus input), this might work without jumping to the next hill (see
Figure 3.6). However, since gradient descent updates only weights of neurons, it is
essential to understand that its trajectory is confined to the parameter space (e.g. x-y
plane in R3). The trajectory follows the direction of the steepest descent and can be
visualized in the corresponding contour plot, where the shortness in distance to the
next lower level is proportional to the steepness.

x

10
5

0
5

10

y

10
5

0
5

10

z

30
20
10
0
10
20
30

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

y

Figure 3.6: Visualization of a possible R3 output space that could represent a loss function’s
surface (left) with its corresponding contour-plot (right). Gradient descent tries to find a
minima in the direction of steepest descent of the loss function. The trajectory of gradient
descent is confined to the parameter space; here, x-y plane.

The general idea is to make steps through the output space, that are leading into
a minimum. The direction is given by the gradients, as they provide information if
one is moving up- or downhill. Therefore, the partial derivative of the loss function
L w.r.t. a specific weight wi,j is required to update wi,j accordingly.

Remember the definition of the perceptron with an arbitrary activation function
ϕ in the output layer neuron. We can calculate any neuron’s output value oj by:

oj = ϕ

(
bi +

n−1∑
0

wi,jxi

)
(3.13)

The bias bi is ignored for now. In ANN4FLES, the bias neuron is implemented as
a neuron with a fixed output value of 1, where the actual trainable shift is implemented
through the weights out into the next layer. Therefore, the bias is handled similar to
any other neuron, beside the fact that it does not change its output value and has no

34

Neural Networks and Deep Learning

connections going in. As a next step, the summation is substituted by function sj:

sj =
n−1∑
0

wixi (3.14)

The loss function is applied to the network’s output L(N(x)). Since N(x) itself
is a chain of functions, we use the chain rule twice to calculate the error with w.r.t.
to wi,j . First, let oj = N(x) such that oj represents the output of the output neuron
and, therefore, the output of the whole network. Then:

∂L

∂wi,j

=
∂L

∂oj

∂oj
wi,j

=
∂L

∂oj

∂oj
sj

∂sj
wi,j

(3.15)

The last factor is trivial, since building the derivative of the sum w.r.t. wi,j , all
other weights are handled as constant factors and therefore thrown out. The remaining
part is wi,jxi, such that:

∂sj
wi,j

=
∂

∂wi,j

n−1∑
0

wi,jxi = xi (3.16)

We substitute the other factors into the sensitivity δj . Depending on if the neuron
j is an inner neuron (part of a hidden layer) or part of the output layer, δj is calculated
differently: An inner neuron has impact to all neurons of the next layer, such that
it’s error can not be calculated directly, but indirectly through a summation over
the sensitivities of the next layer. An output neuron’s sensitivity can be calculated
directly. Thus, we define δj as follows:

δj =
∂L

∂oj

∂oj
∂sj

(3.17)

For output layer neurons, both factors are trivial if loss- and activation-function
are known. However, if j is an inner neuron, the derivative is less obvious due to the
summation. Then:

∂L

∂oj
=
∑
k∈K

(
∂L

∂sk

∂sk
∂oj

)
(3.18)

=
∑
k∈K

(
∂L

∂ok

∂ok
∂sk

∂sk
∂oj

)
(3.19)

=
∑
k∈K

(
∂L

∂ok

∂ok
∂sk︸ ︷︷ ︸

δk

wj,k

)
(3.20)

Therefore, for target values t and output o, with loss functionL(t, o) and activation
function ϕ(s):

δj =
∂L

∂oj

∂oj
∂sj

=

{
∂L(tj ,ϕ(sj))

∂ϕ(sj)

dϕ(sj)

dsj
if j is an output layer neuron,(∑

k∈K wj,kδk
)dϕ(sj)

dsj
if j is a hidden layer neuron.

(3.21)

35

Neural Networks and Deep Learning

After calculating the gradients for each connection, the learning rule can be
applied. For standard gradient descent, the learning rule is defined as:

∆wi,j = −η
∂L

∂wi,j

(3.22)

Using this rule, the new weight results from:

w
(new)
i,j = w

(old)
i,j +∆wi,j (3.23)

In batch gradient descent, the standard (sometimes referred to as vanilla) gradient
descent algorithm, the learning rule is applied after the whole data set is analyzed
[73]. The gradients are summed over the whole data set. Therefore, each epoch the
training consists of one weight update for each connection after seeing all data. This
approach is usually (1) very slow, since neural networks’ training often requires huge
data sets and all information have to be seen before the machine learns anything about
the data and (2) might not work at all for the full data set, if the data set does not fit
into the computer’s memory completely.

The stochastic gradient descent approach goes a different way by applying the
learning rule after each instance of input [73]. Therefore, this approach learns step by
step and the machine is updated with each new experience. This might lead to high
fluctuation while learning new data, but compared to the full-batch approach, it allows
to step out of local minima and find better solutions. Stochastic gradient descent can
be regarded as a stochastic approximation of the gradient descent approach, as the
sub-samples are trained randomly. Anyway, since each instance of data is updating
the weights for this instance’s best case, it often overshoots a good minimum for the
full data set.

In mini-batch gradient descent, the focus is on finding better solutions by using
samples of a given batch size [73]. Therefore, the learning rules are applied after
each mini-batch, a subset of the whole data set. In this way, there exists another
hyper-parameter to control the polarity of fast learning in the stochastic gradient
descent approach versus the higher quality updates of applying rules only after seeing
multiple data. In some use-cases, this approach is also extended by the already
mentioned batch normalization, which increases the speed of the learning process
usually even further [74].

Neural networks are often trained in mini-batches as it is considered faster and
better performance-wise, applying their learning rules after each mini-batch. Then,
in many implementations (e.g. PyTorch [75]) the tensor dimension is incremented,
providing a new dimension for the mini-batch. From computer science perspective,
mini-batch training allows to speed-up the training process even further by paralleliz-
ing it depending on the batch size. Although the gradients have to be summed up for
each instance within a batch, the calculations itself are independent and therefore pre-
destined for parallel Single-Instruction-Multiple-Data (SIMD) instructions. Further,
the batch size simply adds a new dimension to the input tensor, keeping it possible to
run on a GPU’s tensor cores.

36

Neural Networks and Deep Learning

However, all three concepts are based on the gradient descent approach and the
learning rate can be adjusted to increase or decrease the step size in each learning
iteration. Over the years, these concepts were extended: modern architectures often
use improved learning algorithms that use either look-ahead features (e.g. AWL
[76]), momentum based weight updates (e.g. Nesterov [77]), adaptive learning rates
(e.g. AdaDelta [78]) or a combination of them, usually as part of mini-batch training.

3.6 Information Theory and Cross-Entropy Loss
The network’s performance is measured by a loss (or error, cost) function, that is then
used to calculate the gradients for backpropagation. In classification, cross-entropy
loss has become popular and there are several reasons. A first question one should
ask is about what information is required to evaluate a network’s output.

To evaluate loss functions, a neural network with two output neurons using soft-
max activation is discussed. In the binary case, where a 1-hot encoded vector is used
as target values and a single class should be inferred with a given input, the class with
the highest likelihood (based on softmax activation) is inferred. One could calculate
the difference between output values and target values and use the difference as an
indicator for the network’s performance. It seems obvious, that the difference is an
indicator for uncertainty. However, this indicator can be reasoned even more.

Goodfellow wrote:

‘‘The basic intuition behind information theory is that learning that an unlikely
event has occurred is more informative than learning that a likely event has

occurred.’’ [51, p. 71]

A low probability event contains a large amount of information, whereas high
probability events are not surprising and therefore provide less information. A
measure of information is the self-information or Shannon-information [79]:

h(x) = − log(p(x)) (3.24)

where a probability p(x) = 1 would provide 0 information and the amount of non-
guaranteed events result in positive values. (see Figure 3.7)

An entropy of a random variable X describes the level of uncertainty inherent in
the variable’s possible outcome. In particular, it quantifies how surprising an event is
by providing the average amount of self-information an observer would expect to gain
about a random variable, when measuring it [79]. For discrete X , this uncertainty
can be described as:

H (X) = −
∑
x

p(x) log (p(x)) (3.25)

where a larger value of H (X) describes higher uncertainty (see Figure 3.7).
Cross-entropy, however, is the entropy between two distributions. In supervised

learning for classification, two distributions exist: one for the true outcomes t and one

37

Neural Networks and Deep Learning

0.0 0.2 0.4 0.6 0.8 1.0
p(x)

0

1

2

3

4

h(
x)

Self-Information Function

0.0 0.2 0.4 0.6 0.8 1.0
p(x)

0.2

0.4

0.6

0.8

1.0

H(
X)

Entropy Function

Figure 3.7: Visualization of the self-information function by Shannon (left) and the entropy
as expected value of self-information.

for the inferred outcomes o by the neural network. As a loss function, cross-entropy
is described as:

LCE(t, o) =
n−1∑
c=0

tc log(oc) (3.26)

In case of binary classification, where only one label is 1 and all others are 0, this
can be simplified to the binary cross-entropy loss BCE with c indicating the index of
the true class:

LBCE(tc, oc) = −tc log(oc) (3.27)

0.0 0.2 0.4 0.6 0.8 1.0
y_pred

0

1

2

3

4

Cr
os

s-
en

tro
py

 lo
ss

Cross-Entropy Loss for Binary Classification
y_true=0
y_true=1

Figure 3.8: Visualization of the binary cross-
entropy loss BCE. For each output neuron,
the loss can be calculated, depending on if
the neuron represents the true class (orange)
or not (blue). Whereas small differences be-
tween prediction and true outcome lead to
low loss values, the opposite case leads to an
infinitely large error.

Back to softmax: Since softmax is a vector function that is applied to the whole
output layer, we have to calculate the derivative ∂oj

∂sc
of j-th output w.r.t. its c-th input.

Since the cases j = c and j 6= c have to be handled differently, we build the derivative

38

Neural Networks and Deep Learning

j = c first:

∂oj
∂sc

=
∂

exp(sj)∑S
i=1 exp(si)

∂sc
(3.28)

=
exp(sj)

(∑S
i=1 exp(si)

)
− exp(sj) exp(sc)(∑S

i=1 exp(si)
)2 (3.29)

=
exp(sj)∑S
i=1 exp(si)

·
(∑S

i=1 exp(si)
)
− exp(sc)∑S

i=1 exp(si)
(3.30)

=
exp(sj)∑S
i=1 exp(si)

(∑S
i=1 exp(si)∑S
i=1 exp(si)

− exp(sc)∑S
i=1 exp(si)

)
(3.31)

= oj(1− oc) (3.32)
(3.33)

The case j 6= c analog:

∂oj
∂sc

=
∂

exp(sj)∑S
i=1 exp(si)

∂sc
(3.34)

=
0− exp(sc) exp(sj)(∑S

i=1 exp(si)
)2 (3.35)

= − exp(sc)∑S
i=1 exp(si)

· exp(sj)∑S
i=1 exp(si)

(3.36)

= −ocoj (3.37)

Building the derivative of cross-entropy loss, using chain rule for logarithm:

∂LCE(t, o)
∂sc

=
∂
∑n−1

c=0 tj log(oj)
∂sc

(3.38)

= −
n−1∑
j=0

tj
∂ log(oj)

∂sc
(3.39)

= −
n−1∑
j=0

tj
∂ log(oj)

∂oj
· ∂oj
∂sc

(3.40)

= −
n−1∑
j=0

tj
1

oj
· ∂oj
∂sc

(3.41)

Separating the case j = c from the sum and inserting softmax derivatives for the

39

Neural Networks and Deep Learning

specific cases:

∂LCE(t, o)
∂sc

= −tj
1

oj

∂oj
∂sc︸ ︷︷ ︸

j=c

−
∑
j 6=c

tj
1

oj
· ∂oj
∂sc

(3.42)

= −tc
1

oc
oc(1− oc)−

∑
j 6=c

tj
1

oj
· ∂oj
∂sc

(3.43)

= −tc(1− oc)−
∑
j 6=c

tj
1

oj
· (−ocoj) (3.44)

= −tc(1− oc) +
∑
j 6=c

tjoc (3.45)

= −tc + tcoc +
∑
j 6=c

tjoc (3.46)

= −tc + oc

(
tc +

∑
j 6=c

tj

)
(3.47)

Since
∑

j tj = 1 by definition because t is a 1-hot encoded vector, tc+
∑

j 6=c tj =
1, and therefore, oc · 1− tc = oc − tc, which is the difference between output value
and target value for neuron c, as mentioned before.

Summarized, cross-entropy loss and softmax activation provide much information
about the network’s results and its certainty. Furthermore, to calculate the output
layer’s δ-values, cross-entropy and softmax can be simplified to a simple difference of
output- and target values, making the combination predestined for many classification
problems. Therefore, both are used in the output layer of the neural networks proposed
by the present work.

3.7 ANN-Based Particle Identification in KFPF
Neural networks were already applied to the particle identification in the mother par-
ticle competition of KFPF. Previous work suggests that both competition approaches,
the existing and their ANN-based approach, provide comparable results [23]. For
performance measurement, histograms of total-, signal-, background- and ghost-mass
distributions were used. For comparison, these results are recapitulated. Unfortu-
nately, neither the exact neural network nor the root files to create the histograms and
results are available, therefore, the presented results by [23] are shown.

However, previous work had two approaches, with and without MVD. As we
compare only results with MVD enabled, only previously created plots using MVD
are shown.

The neural network that was in use is a MLP (see Figure 3.9) trained on 10k PHSD
simulated events, using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm,
which is a quasi-Newton method to find local minima of the loss function [80, 81].
The training set consisted of 7500 events, whereas the test set consisted of 2500 events,
updating the weights over 500 iterations. Then, the best performing network in regard

40

Neural Networks and Deep Learning

to training- and testing set accuracies was chosen. Beside the test set, the network’s
performance was evaluated within KFPF to see its classification performance within
the package. The data set to evaluate the network includes 500k events. [23]

mass1

mass2

PDGmass1

PDGmass2

N(x) ∈ [0, 1]

Input Layer Hidden Layer 1/Hidden Layer 2 Output layer

Figure 3.9: Neural network used for previous work [23], classifying the best fitting mother
particle for π− based on the mass and PDG mass values of both candidates.

In the histogram of total mass spectra (see Figure 3.10), one can see that the neural
network approach (blue) performed slightly worse in comparison to the existing
method (red). Over the whole range, one can see that the neural network based
approach rejected less reconstructed particles than the existing competition, since
it has more entries in almost every bin. However, in general that could also be due
to less rejected signal in comparison to the existing method, but the other plots will
show that it is not only the case.

M
Entries 1713467
Mean 0.529
Std Dev 0.1569

]2m [GeV/c
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

210

310

410

510

M
Entries 1713467
Mean 0.529
Std Dev 0.1569

Ks M
M

Entries 2695338
Mean 1.203
Std Dev 0.1873

]2m [GeV/c
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

10

210

310

410

510

M
Entries 2695338
Mean 1.203
Std Dev 0.1873

Lambda M

Figure 3.10: Total mass spectra of Ks (left) and Λ (right) using logarithmic scaling. These
histograms were created by [23].

Figure 3.11 shows the reconstructed signal histograms. For Λ, the ANN approach
of previous work seems to reconstruct more signal, as it has consistently slightly
more or an equal amount of entries in the bins in comparison to the existing method.

41

Neural Networks and Deep Learning

For Ks it looks like that both approaches perform equally. However, since these plots
do not use RBGa with an alpha lower than 1, one can only assume that the red line
(existing approach) is always behind the blue line, but there might exist some areas
where the red line is not existing, as there are no entries at all.

M
Entries 954091
Mean 0.4978
Std Dev 0.004201

]2m [GeV/c
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

1

10

210

310

410

510

M
Entries 954091
Mean 0.4978
Std Dev 0.004201

Ks/Signal M
M

Entries 1674495
Mean 1.116
Std Dev 0.001889

]2m [GeV/c
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

1

10

210

310

410

510

M
Entries 1674495
Mean 1.116
Std Dev 0.001889

Lambda/Signal M

Figure 3.11: Reconstructed signal mass spectra of Ks (left) and Λ (right) using logarithmic
scaling. These histograms were created by [23].

In Figure 3.12 the background of both competitions is shown. In the histogram
of Ks, it is clearly visible in which area the neural network approach can shine: It is
well performing on reducing the background at the mass distribution peak. However,
it performs slightly worse for the general background with larger distance to the peak.
For Λ, the neural network seems to reject less background particles over the whole
range of the histogram. Here, contrary to Ks, within the peak area (PDG mass of
Λ: 1.116GeV/c2), the neural network approach rejects less background particles in
comparison to the existing method as well.

M
Entries 37086
Mean 0.4428
Std Dev 0.08341

]2m [GeV/c
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

1

10

210

310

M
Entries 37086
Mean 0.4428
Std Dev 0.08341

Ks/Background M
M

Entries 36002
Mean 1.323
Std Dev 0.2259

]2m [GeV/c
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

1

10

210

310

M
Entries 36002
Mean 1.323
Std Dev 0.2259

Lambda/Background M

Figure 3.12: Reconstructed background mass spectra of Ks (left) and Λ (right) using loga-
rithmic scaling. These histograms were created by [23].

Investigating the ghosts (see Figure 3.13), one can see where some of the increased
background by the neural network approach originates. For Λ, over the whole range
the number of ghosts is increased, indicating that the network approach rejects less
ghost particles. For Ks, the illustration is similar: Beside the peak at Ks PDG mass
of 0.493GeV/c2, the number of ghosts is increased.

In general, with the logarithmic scaling in mind, both competitions presented in
this section, the existing method of KFPF and the ANN based approach by previous
work offer comparable results as it was already mentioned by [23]. It was shown
that a neural network can solve the task, which is usually done by KFPF’s existing

42

Neural Networks and Deep Learning

M
Entries 722290
Mean 0.5806
Std Dev 0.2415

]2m [GeV/c
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

210

310

M
Entries 722290
Mean 0.5806
Std Dev 0.2415

Ks/Ghost M
M

Entries 984841
Mean 1.366
Std Dev 0.2447

]2m [GeV/c
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

10

210

310

410

M
Entries 984841
Mean 1.366
Std Dev 0.2447

Lambda/Ghost M

Figure 3.13: Reconstructed ghost mass spectra of Ks (left) and Λ (right) using logarithmic
scaling. These histograms were created by [23].

competition.

Comparing the results of previous work in relation to the results presented in this
thesis, care has to be taken that KFPF and FLES are complex packages. The exact
results differ depending on the settings used, and not all settings of previous work
are known in detail. Furthermore, in previous work, the PHSD model was used to
create generated simulated data, whereas in the presented results the UrQMD model
is underlying, and the numbers of events vary too. Both models should generate
approximately equal results, but it is suggested to compare both models in context
of the ANN-based approach. Therefore, however, the approach in this work tries to
adapt and improve previous work to the best of knowledge and belief.

3.8 ANN4FLES: High Performance Neural Networks
The event selection in CBM requires a full event reconstruction that is processed
on high performance computers. Although there are several user-friendly neural
network toolkits such as PyTorch [82], Keras [83] or Tensorflow [84], a work group
develops a high performance neural network package in C++ for applications in the
First Level Event Selection called ANN4FLES [19, p. 161].

Figure 3.14: The graphical user interface of ANN4FLES at its current state.

The development of an own package allows to adjust and design the source code

43

Neural Networks and Deep Learning

in a way, that it is well aligned for the needs of the CBM experiment. However, the
usage is not limited to CBM, as there are cooperations with other experiments (e.g.
LHCb) and universities to build a platform together [85]. Furthermore, the package
will be adjusted to provide all relevant information required for physicist, to interpret
the results reasonably.

At its current state, the package provides multiple types of neural networks such as
multi-layer perceptrons, convolutional neural networks, recurrent neural networks and
graph neural networks. The architecture can be selected arbitrary, but, at current state,
the network does not provide a network builder that can export full architectures into
file, which is planned for the future. Then, the training process can be done without
any programming knowledge via GUI, and, in case of CBM and high performance
computers, the inference-only mode can be easily loaded via command line interface.
However, if the network has to be included into existing C++ code, minor skills of
programming are required to place it into the correct position. For the future, for
classification it is planned to become analog to:

1 @// Initialization with architecture, settings and weights provided by

↪→ files

2 Network network = Network(architecture, settings, weights);

3 @@...

4 @// Infer predictions, returns class index

5 int pred = Network.Predict(input);

6 @@...

7

Listing 3.1: Example code on how ANN4FLES can be initialized and used within
another package of the First Level Event Selection.

ANN4FLES has been compared against well-established neural network packages
like PyTorch and performed comparable in regard to accuracy (see also Figure 4.3,
Figure 4.13). Considering speedup, ANN4FLES in its current state can not be run
on GPU. However, multi-threading and SIMD instructions are used to increase the
network’s performance, providing comparable results in regard to runtime on CPU.

In the present thesis, the GUI will be used to perform the neural networks training.
Then, the trained weights of the network are exported to file, such that they can be
imported within KFPF to have a fully functional neural network in inference-only
mode.

44

Deep Learning for Identification of Short-Lived Particles

Chapter 4

Deep Learning for Identification of
Short-Lived Particles

In this chapter, the neural network approach using ANN4FLES of the present thesis is
analyzed and discussed. First, a reproduction of previous work is aspired, thus, using
a neural network based classifier for Ks and Λ based on the candidates’ mass and
PDG mass values. Then, since previous work suggested it as a follow-up approach, a
neural network using mass plus transverse momenta is introduced and discussed.

4.1 Extraction of Training Data in KFPF
The extraction of training data for the neural network approach presented in this thesis
is done by a modification of KFPF (see Figure 4.1). Supervised learning requires to
know the true outcomes for each instance of input. In case of Ks/Λ-classification, for
each pair of particles that compete against each other, the information about which
particle is more likely to be the best fitting mother candidate is required. On real
data, the following approach to extract training data is almost impossible, as there is
no partitioning in signal and background. For real data, the true outcomes are pre-
dominantly unknown or only based on statistical evidence. However, using simulated
generated data, information about particles that belong to signal or background is
available.

Overall, 25k events generated by the UrQMD model were used in this thesis, 12k
were used for training and testing, whereas 13k were used to evaluate the network’s
performance in ANN4FLES compared to the existing approach. All events are central
Au+Au collisions at 10 GeV energy and therefore within the specifications of the
CBM experiment. For training and testing, however, the amounts of Λ was reduced
after extraction. As there are usually more existing Λ than Ks created in the collision,
the training and validation was performed on an equal number of particles to ensure
fair results.

In KFPF, there are several classes to measure the algorithm’s performance and
efficiency by comparing the reconstructed results to the simulated generated data.
In particular, the KFTopoPerformance class includes a method MatchParticles()

to match reconstructed particles with their corresponding simulated monte carlo
particles. Thus, it is possible to verify for each particle that is reconstructed correctly.

45

Deep Learning for Identification of Short-Lived Particles

Figure 4.1: Visualization of the procedure: Starting with the extraction of data within the
KFPF package, followed by the training in ANN4FLES standalone. Pre-trained network
(here represented by weights) is loaded into the ANN4FLES package recently included in the
ROOT framework. On a different set of data, the classification performance is then evaluated
within KFPF.

To extract crucial information about the true outcome, this method is modified to
extract the data, after particles are matched.

Including background particles in the training process would train the neural
network directly on noise. Therefore, for training, only signal particles are considered.
After the particles are matched, each particle is identified by its PDG code (Ks=310,
Λ=3122). Here, the PDG code is truly known and not only a hypothesis, since all
matched particles provide monte-carlo information. Then, for each particle, the
daughter particles are considered. Since both, Ks → π+π− and Λ → pπ−, raise
pi− in their decays, a shared pi−-daughter is searched for. One of the parents of pi−,
which is in this case either Ks or Λ, is not the correct parent and should be removed
by a competition to reduce background. Therefore, particles that match these criteria
are extracted.

The extracted information contain the true parent as a label for the neural network
based classifier, and, depending on the approach, the following information. In case
of classification on mass values only, for each Ks and Λ, the reconstructed mass
values plus the particle’s PDG mass is extracted. Following the suggestion of previous
work [23], masses and transverse momenta are extracted for the other approach. To
provide comparable results, all information are extracted from the same events.

46

Deep Learning for Identification of Short-Lived Particles

4.2 ANN4FLES Implementation in KFPF
The ANN4FLES package is used and included into the KFPF package to provide a
classification in inference-only mode, after the network was fully trained.

The network was included in place of the default competition and the previous
neural network approach, within the KFTopoReconstructor class (see Listing 4.1).
ANN4FLES is initialized, and the pre-trained weights are loaded. Similar to the
default competition, a storage for used particles, candidates flagged for deletion and
IDs of the best mothers is in use. Analog to previous work, only Ks and Λ are selected
for the competition. Then, a χ2 cut is applied with respect to the primary vertex.
Therefore, only primary particles are selected for the competition, whereas others
are flagged for deletion.

1 void KFParticleTopoReconstructor@::SelectParticleCandidatesByNetwork() {

↪→
2 Int_t particleNum = fParticles.size();

3

4 std@::vector<bool> isUsed(fParticles.size());

5 std@::vector<bool> deleteCandidate(fParticles.size());

6 std@::vector<int> bestMother(fParticles.size());

7

8 Network net = Network();

9 net.InitializeANN(topology, true);

10 net.ImportNeuronWeights(weight_path);

11

12 int pCounter = 0;

13

14 for(unsigned int iParticle=0; iParticle<fParticles.size(); iParticle@++)

15 {

16 isUsed[iParticle] = false;

17 deleteCandidate[iParticle] = false;

18 bestMother[iParticle] = -1;

19 }

20

21 for(unsigned int iParticle=0; iParticle<fParticles.size(); iParticle@++) {

↪→
22 KFParticle tmp = fParticles[iParticle];

23 if(!UseParticleInCompetitionForNetwork(fParticles[iParticle].GetPDG()))

↪→ {

24 continue;

25 }

26 tmp.SetProductionVertex(GetPrimVertex());

27 if(tmp.Chi2()/tmp.NDF()>3)

28 deleteCandidate[iParticle] = true;

29 }

30

Listing 4.1: Initialization of ANN4FLES within the KFTopoReconstructor class in
KFPF.

To perform a rough cut similar to the existing method in KFPF, the mass differ-
ences with respect to the known peak are calculated for Ks and Λ (see Listing 4.2,

47

Deep Learning for Identification of Short-Lived Particles

lines 10, 21, 27). Again, the following code snippet examines if the masses of at
least one of the candidates is within the 3σ range of the known PDG mass for the
respective particles, as it is statistically unlikely to find Ks and Λ with a distance to
their peak larger than 3σ, as the particles follow a normal distribution.

1 for(unsigned int iParticle=0; iParticle<fParticles.size(); iParticle@++) {

2 if(deleteCandidate[iParticle]) continue;

3

4 if(!UseParticleInCompetitionForNetwork(fParticles[iParticle].GetPDG()))

↪→ continue;

5

6 float mass1, massSigma1;

7 fParticles[iParticle].GetMass(mass1, massSigma1);

8 float massPDG1, massPDGSigma1;

9 KFParticleDatabase@::Instance()->GetMotherMass(fParticles[iParticle].

↪→ GetPDG(), massPDG1, massPDGSigma1);

10 float dm1 = fabs(mass1 - massPDG1)/massPDGSigma1;

11

12 for(unsigned int jParticle=iParticle+1; jParticle<fParticles.size();

↪→ jParticle@++) {

13 if(deleteCandidate[jParticle]) continue;

14

15 if(!UseParticleInCompetitionForNetwork(fParticles[jParticle].GetPDG()))

↪→ continue;

16

17 float mass2, massSigma2;

18 float massPDG2, massPDGSigma2;

19 fParticles[jParticle].GetMass(mass2, massSigma2);

20 KFParticleDatabase@::Instance()->GetMotherMass(fParticles[jParticle].

↪→ GetPDG(), massPDG2, massPDGSigma2);

21 float dm2 = fabs(mass2 - massPDG2)/massPDGSigma2;

22

23 if(! (fParticles[iParticle].DaughterIds()[0] @== fParticles[jParticle].

↪→ DaughterIds()[0] @&&

24 fParticles[iParticle].DaughterIds()[1] @== fParticles[jParticle].

↪→ DaughterIds()[1])) continue;

25 if (fParticles[iParticle].GetPDG() @== fParticles[jParticle].GetPDG())

↪→ continue;

26

27 if(dm1 < 3.f @|| dm2 < 3.f){

28 @@... @//PART 2

29

Listing 4.2: Part 1 of the main loop. Calculation of mass differences with respect to the
peak.

However, if one of the particles is likely to be either Ks or Λ, the neural network
based competition starts. First, the input of the neural network is stored into a
vector that is then fed into ANN4FLES for classification (Listing 4.3, line 2-3). Here,
InferOutput(input) returns an integer that corresponds to the predicted class. If the
value of the first neuron is larger, 0 is returned and, hence, Λ is classified (Listing 4.3,
line 5-10). Contrary, if the second neuron’s value is larger, 1 is returned to classify
Ks (Listing 4.3, lines 11-16). After the classification is performed, a clean-up for
particles that were forced to skip the competition is done by checking if both daughters

48

Deep Learning for Identification of Short-Lived Particles

have a valid mother particle, and, if not, they are flagged for deletion. Finally, the
PDG code of all particles that were flagged for deletion is set to an invalid code of -1
to indicate they are rejected (Listing 4.3, line 30-32).

1 @@... @// proceeding

2 std@::vector<float> inputs_ann = {mass1, massPDG1, mass2, massPDG2};

3 int out = net.InferOutput(inputs_ann);

4

5 @// lambda

6 if (out @== 0) {

7 deleteCandidate[iParticle] = true;

8 bestMother[fParticles[iParticle].DaughterIds()[0]] = jParticle;

9 bestMother[fParticles[iParticle].DaughterIds()[1]] = jParticle;

10 }

11 @// kshort

12 else if (out @== 1) {

13 deleteCandidate[jParticle] = true;

14 bestMother[fParticles[iParticle].DaughterIds()[0]] = iParticle;

15 bestMother[fParticles[iParticle].DaughterIds()[1]] = iParticle;

16 }

17 }

18 }

19 }

20 for(int iParticle=0; iParticle<int(fParticles.size()); iParticle@++) {

21 if(deleteCandidate[iParticle]) continue;

22

23 for(int iDaughter=0; iDaughter<fParticles[iParticle].NDaughters();

↪→ iDaughter@++)

24 if(bestMother[fParticles[iParticle].DaughterIds()[iDaughter]] @!=

↪→ iParticle @&& bestMother[fParticles[iParticle].DaughterIds()[iDaughter]]

↪→ > -1) {

25 deleteCandidate[iParticle] = true;

26 break;

27 }

28 }

29

30 for(unsigned int iParticle=0; iParticle<fParticles.size(); iParticle@++)

31 if(deleteCandidate[iParticle]) fParticles[iParticle].SetPDG(-1);

32 }

Listing 4.3: Part 2 of the main loop, including the neural network based competition.

4.3 Deep Learning Classification: m + PDGm

As previous work already showed that a neural network can perform comparable
to the default approach of KFPF, ANN4FLES is used to implement a slightly more
complex neural network for this classification task (see Figure 4.2).

After using the same architecture as it was used in previous work, a neural network
with a more complex architecture was finally chosen, as it provides accuracies of
up to 98.6% for the validation set (see Figure 4.3). It was shown on multiple well-
known data sets, that the results of other neural network packages offered comparable
results to ANN4FLES, which makes one confident that the implemented maths
in ANN4FLES are correct [19, p. 161]. However, the opportunity was taken to

49

Deep Learning for Identification of Short-Lived Particles

m1

PDGm1

m2

PDGm2

N(x) = o ∈ R2

Input Layer Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Output Layer

Figure 4.2: Deep learning architecture used to classify Ks and Λ, using 3 hidden layers with
8 neurons each, hidden activation function LReLU. Output layer consists of two neurons with
softmax activation and cross entropy loss. Here, based on m and PDGm for each candidate.

compare ANN4FLES with PyTorch on the extracted data set too. An identically
constructed neural network was implemented in PyTorch to ensure valid results. The
PyTorch architecture provided equally high accuracy values and again confirmed the
classification performance of ANN4FLES.

0 20 40 60 80 100
Epoch

85

90

95

100

Ac
cu

ra
cy

Training and Validation Accuracies

ANN4FLES Train Acc
ANN4FLES Val Acc
PyTorch Train Acc
PyTorch Val Acc

Figure 4.3: ANN4FLES and PyTorch accuracies for training and validation, using mass and
PDG mass over 100 epochs with a peak performance of 98.6% in the validation set. The
classification is based on m and PDGm of each candidate. ANN4FLES seems to learn faster
than PyTorch here. However, both achieve a high accuracy on validation set.

An error of only 1.4% on the validation set suggests that the classification perfor-

50

Deep Learning for Identification of Short-Lived Particles

mance of the more complex ANN4FLES architecture is better, since the error rate of
previous work is given with more than 10%. Although the generators for simulated
events should perform equally, further investigations are suggested, as previous work
used the PHSD model to generate data for the neural network training and validation,
whereas in the present thesis the UrQMD model was chosen. The ANN4FLES archi-
tecture uses ADAM optimizer based on mini-batch gradient descent with a batch size
of 50, whereas previous work used the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm to train the neural network [23, 80, 81]. The initialization in previous work
is unknown, but the ANN4FLES network used the same initialization as PyTorch,
according to their website [86].

To find well performing architecture and settings, different learning rates in the
range of 0.001 and 0.005 were tested. For ADAM, the default β values were chosen
according to their paper [87]. The final results are accomplished by a network that
was trained with a learning rate of 0.003, whereas lower learning rates performed
almost equally, larger learning rates tend to perform slightly worse. It is assumed
that a larger learning rate does not allow to move as deep into a minimum as with
using lower rates, since it overshoots the minima slightly.

Beside the rates, different layer sizes and network depths were tested. Here,
the main focus was set on to find a balance between network size and results. On
the one hand, a more complex structure could lead to an even better performance.
However, the raw classification performance is already good, such that much deeper
networks were not tested in this thesis. A deep neural network increases the amount
of parameters and calculations, slowing the process, which could be negative with
respect to the fast algorithms required for FLES. On the other hand, less complex
structures seem to perform worse. Nevertheless, it is suggested to extend ANN4FLES
with an automatized architecture finder, that changes hyper-parameters and tests the
network’s performance fully automatic for a given range of parameters, such as layer
sizes, depth and feed forward time. That can help to find a matching architecture for
specific requirements.

However, in Figure 4.4, the total spectra histograms for Ks and Λ are shown. The
results using KFPF without competition and with the existing method are visualized
for comparison. The ANN4FLES approach is colored red, and one can see that it
seems to reduce the number of entries over the whole range. In areas with larger
distance to the peak, this is likely to be background. Nevertheless, there is also a
reduction of entries at the peak area for Ks. To evaluate the real performance, other
histograms has to be taken into account.

Investigating the signal histograms in Figure 4.5, in both cases, a slight reduction
of signal is indicated compared to running KFPF without competition. For Ks, the
ANN4FLES approach rejected slightly more signal particles compared to the existing
method, whereas for Λ the results are the other way around: Here, the existing method
rejects more signal particles than ANN4FLES. In comparison to Figure 4.4, one
can now state that the reduction in the peak area is mostly due to correctly rejected
background particles. Altogether, both competitions reduce the signal only by an
negligible amount.

51

Deep Learning for Identification of Short-Lived Particles

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
]2m [GeV/c

0

1000

2000

3000

4000

5000

Ks M

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
]2m [GeV/c

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Lambda M

Figure 4.4: Histograms of total spectra for Ks (left) and Λ (right) masses. Comparison of
existing mother particle competition (green), no competition (black) and competition by
ANN4FLES (red).

0.46 0.48 0.5 0.52 0.54
]2m [GeV/c

0

500

1000

1500

2000

2500

3000

Ks/Signal M

1.08 1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16
]2m [GeV/c

0

2000

4000

6000

8000

10000

12000

14000

16000

Lambda/Signal M

Figure 4.5: Histograms of signals for Ks (left) and Λ (right) masses. Comparison of existing
mother particle competition (green), no competition (black) and ANN4FLES (red).

In Figure 4.6, the background is shown. Based on the histogram for Λ, it is
difficult to see which competition is better. Both reduce the background significantly,
but around the peak the existing method seems to perform better, as we can see a
peak for ANN4FLES at Λ’s PDG mass 1.116GeV/c2, whereas in the whole range,
ANN4FLES seems to reduce the background slightly more. For Λ, this histogram
indicates a tie between ANN4FLES and the existing method. However, evaluating
Ks, there is no peak at the PDG mass of 0.493GeV/c2 by ANN4FLES. The neural
network seems to perform well in rejecting Ks background around the known mass.
Here, ANN4FLES shines over the whole range of mass bins.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
]2m [GeV/c

0

50

100

150

200

250

300

350

Ks/Background M

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
]2m [GeV/c

0

20

40

60

80

100

120

140

160

Lambda/Background M

Figure 4.6: Histograms of background for Ks (left) and Λ (right) masses. Comparison of
existing mother particle competition (green), no competition (black) and ANN4FLES (red).

52

Deep Learning for Identification of Short-Lived Particles

In the ghost histograms (see Figure 4.7), ANN4FLES seems to be ahead in both
cases Λ and Ks. Although, similar to the existing method, ANN4FLES has a peak
around the PDG mass bin, the existing method has more ghosts over the whole
range and within the peak area. In case of Ks, the network again shines, having a
slight distance to the existing approach. Thus, the neural network rejects more ghost
particles than the default approach and therefore helps to reduce the background.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
]2m [GeV/c

0

200

400

600

800

1000

1200

1400

1600

1800

Ks/Ghost M

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
]2m [GeV/c

0

500

1000

1500

2000

2500

Lambda/Ghost M

Figure 4.7: Histograms of ghosts for Ks (left) and Λ (right) masses. Comparison of existing
mother particle competition (green) and no competition (black) and ANN4FLES (red).

The Armenteros-Podolanski plots in Figure 4.8 show a comparison to the exist-
ing method against the ANN4FLES approach. It was already shown that, without
competition, the amount of background is huge enough to blur the arch Ks almost
completely. In a comparison between both competitions, however, the arch is clearly
visible in both approaches. The most noticeable area is at α = 0.75 and transverse
momentum 0.1 GeV/c. Using the existing competition, the overlapping zone of Ks

and Λ has more entries, whereas ANN4FLES seems to not count them into the Ks

distribution. Altogether, both competitions have difficulties in this area, as it is hard
to distinguish between both particles if their properties almost match for both cases.
Considering the symmetry that should exist on average for Ks, the overlapping area
has too few entries with ANN4FLES but too many entries in the existing method.

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
)-

L
+p+

L
)/(p-

L
-p+

L
 (pα

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 [G
eV

/c
]

tq

Armenteros
Entries 315246
Mean x 0.1854
Mean y 0.1586
Std Dev x 0.5481
Std Dev y 0.1236

0

100

200

300

400

500

600

700

800
Armenteros

Entries 315246
Mean x 0.1854
Mean y 0.1586
Std Dev x 0.5481
Std Dev y 0.1236

Ks Armenteros

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
)-

L
+p+

L
)/(p-

L
-p+

L
 (pα

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 [G
eV

/c
]

tq

Armenteros
Entries 244551
Mean x 0.1325
Mean y 0.1471
Std Dev x 0.5438
Std Dev y 0.1135

0

100

200

300

400

500

600
Armenteros

Entries 244551
Mean x 0.1325
Mean y 0.1471
Std Dev x 0.5438
Std Dev y 0.1135

Ks Armenteros

Figure 4.8: Armenteros-Podolanski plots with total spectra for Ks with existing competition
(left) and with ANN4FLES based competition (right).

For Λ’s Armenteros-Podolanski plot (see Figure 4.9), both competitions seem to
perform comparable again. Whereas the existing method has slightly fewer entries
within the yellow colored areas, some background bins where Ks’s arch is expected
are removed completely. The ANN4FLES approach in turn has more entries in the
arch of Λ, but the area where the arch of Ks is expected, it has up to 200 entries per

53

Deep Learning for Identification of Short-Lived Particles

bin. Due to rounding behavior per bin, based on this plot only, it is difficult to argue
which competition is better.

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
)-

L
+p+

L
)/(p-

L
-p+

L
 (pα

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 [G
eV

/c
]

tq

Armenteros
Entries 337434
Mean x 0.289
Mean y 0.1437
Std Dev x 0.5302
Std Dev y 0.1227

0

500

1000

1500

2000

2500

3000

3500

4000

4500Armenteros
Entries 337434
Mean x 0.289
Mean y 0.1437
Std Dev x 0.5302
Std Dev y 0.1227

Lambda Armenteros

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
)-

L
+p+

L
)/(p-

L
-p+

L
 (pα

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 [G
eV

/c
]

tq

Armenteros
Entries 303167
Mean x 0.3123
Mean y 0.1353
Std Dev x 0.5231
Std Dev y 0.1168

0

1000

2000

3000

4000

5000

Armenteros
Entries 303167
Mean x 0.3123
Mean y 0.1353
Std Dev x 0.5231
Std Dev y 0.1168

Lambda Armenteros

Figure 4.9: Armenteros-Podolanski plots for Λ with the existing competition (left) and with
ANN4FLES based competition (right).

For this comparison, some histograms have shown that ANN4FLES seems to
perform better in background and ghost rejection, especially for Ks. Analog to
the comparison of the existing approach to KFPF without competition, the signal-
background ratio and significance are compared now. Figure 4.10 shows the invariant
mass spectra of Ks = π+π− and Λ = pπ− for the existing competition again. It
was already shown that the existing competition improved S/B-ratio and significance
values, hence, KFPF without competition is not illustrated again.

As already mentioned, the goal is to have the S/B-ratio and significance as large as
possible, where for the significance a value larger than 5 is considered as a threshold
to distinguish between signal and background with certainty. With a significance of
149 and 213 for Ks and Λ respectively, the clear signal is given in both cases using
the default competition.

0.5 0.6
]2 [GeV/c-π+π invm

0

2000

4000E
nt

ri
es

-π+π→SK

2 = 3.8 MeV/cσ SK

 = 149S+BS/B = 3.58 S/

1.1 1.15
]2 [GeV/c-π pinvm

0

10000

20000

E
nt

ri
es

-πp→Λ

2 = 1.4 MeV/cσ Λ

 = 213S+BS/B = 8.06 S/

Figure 4.10: Invariant mass distributions of Ks = π+π− and Λ = pπ− for the default
competition, including signal-background ratio and significance.

The following results are achieved by the ANN4FLES approach (see Figure 4.11).
Comparing the S/B-ratio for Ks, one can see that the ANN approach improved the
value by around 16%. For Λ, however, the S/B-ratio has been reduced by around 2%.
Considering both particles, ANN4FLES has reduced the background successfully
even further. However, for Ks the significance was also decreased by around 3%,
whereas the significance of Λ was increased by 1%. That indicates, that even if the
background was reduced successfully on average, the fluctuation in the background

54

Deep Learning for Identification of Short-Lived Particles

has been increased on average in comparison to the existing method. Nevertheless,
both significances are high enough to consider these particles as a clear signal.

0.5 0.6
]2 [GeV/c-π+π invm

0

2000

4000
E

nt
ri

es

-π+π→SK

2 = 3.7 MeV/cσ SK

 = 144S+BS/B = 4.16 S/

1.1 1.15
]2 [GeV/c-π pinvm

0

10000

20000

E
nt

ri
es

-πp→Λ

2 = 1.4 MeV/cσ Λ

 = 216S+BS/B = 7.88 S/

Figure 4.11: Invariant mass distributions of Ks = π+π− and Λ = pπ−, including signal-
background ratio and significance for the ANN4FLES approach.

Summarized, the ANN4FLES based competition using mass and PDG mass can
perform comparable to the existing method. In general, it reduces background better
than the existing approach, even though the significance is decreased slightly.

4.4 Deep Learning Classification: m + pt

Since previous work suggested an approach using mass m and transversal momentum
pt of both candidates to classify between Ks and Λ, that approach is introduced in
this section. The same ANN4FLES architecture (see Figure 4.12) was trained on m
and pt. Now, new results are compared to the ANN4FLES approach using m and
PDGm.

m1

pt,1

m2

pt,2

N(x) = o ∈ R2

Input Layer Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Output Layer

Figure 4.12: Deep learning architecture used to classify Ks and Λ, using 3 hidden layers
with 8 neurons each, hidden activation function LReLU. Output layer consists of two neurons
with softmax activation and cross entropy loss. Here, based on m and pt of each candidate.

55

Deep Learning for Identification of Short-Lived Particles

Again, a comparison network is implemented using PyTorch. This time, the
PyTorch network seems to perform slightly better using Ks’s and Λ’s mass and trans-
verse momentum (see Figure 4.13). However, again, both networks achieve accuracy
values on the test set with more than 98%. The raw classification performance did
not change, using the transverse momenta instead of PDG masses. However, one will
see that there are slight differences in the histograms.

0 20 40 60 80 100
Epoch

85

90

95

100

Ac
cu

ra
cy

Training and Validation Accuracies

ANN4FLES Train Acc
ANN4FLES Val Acc
PyTorch Train Acc
PyTorch Val Acc

Figure 4.13: ANN4FLES and PyTorch accuracies for training and validation, using mass
and transverse momentum over 100 epochs with a peak performance of more than 98% in
the validation set. Here, classification based on m and pt of each candidate. PyTorch seems
to learn slightly faster than ANN4FLES on m and pt. However, both achieve high accuracy
on the validation set again.

First, again, the total mass spectra are evaluated (Figure 4.14), as they provide a
rough overview over the results. For Ks one can see that the new approach using pt
is slightly ahead in the peak area and besides that performs equally compared to the
use of PDGm. For Λ, contrary, it seems vise versa. In the peak area the approach
with PDGm is ahead, whereas the performance around the peak is equally again.
The reason might be, that the network is now focused more on Λ instead of Ks. As it
is likely to have multiple local minima in the loss function, one might have a better
performance on classifying Λ whereas another minima might perform better on Ks,
without changing the average performance. To evaluate it further, it is in general
suggested to review the performance on Ks and Λ independently, to find differences
and possible reasons.

Figure 4.15 indicates the same. ForΛ, the previous approach on PDGm performed
better, whereas for Ks performed better on transverse momentum pt. However, it
is also clearly visible that both ideas perform equally, since the results relative
differences are minimal.

In the background histograms (see Figure 4.16), however, it is shown that around

56

Deep Learning for Identification of Short-Lived Particles

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
]2m [GeV/c

0

500

1000

1500

2000

2500

3000

3500

Ks M

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
]2m [GeV/c

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Lambda M

Figure 4.14: Histograms of total mass spectra for Ks and Λ. Comparison of ANN4FLES
based on m and PDGm (red) against m and pt (blue).

0.46 0.48 0.5 0.52 0.54
]2m [GeV/c

0

500

1000

1500

2000

2500

3000

Ks/Signal M

1.08 1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16
]2m [GeV/c

0

2000

4000

6000

8000

10000

12000

14000

16000

Lambda/Signal M

Figure 4.15: Histograms of signal mass spectra for Ks and Λ. Comparison of ANN4FLES
based on m and PDGm (red) against m and pt (blue).

the peak of Ks (PDG mass 0.493GeV/c2), the new approach performed worse. In
Figure 4.14, the entries in Ks that were more compared to the approach using PDGm
are mostly based on non-rejected background, as one can see in Figure 4.16. For
Λ, the background was decreased in the peak area, indicating why there were fewer
entries around the peak in Figure 4.14.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
]2m [GeV/c

0

20

40

60

80

100

120

Ks/Background M

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
]2m [GeV/c

0

20

40

60

80

100

120

Lambda/Background M

Figure 4.16: Histograms of background mass spectra for Ks and Λ. Comparison of
ANN4FLES based on m and PDGm (red) against m and pt (blue).

The ghost histogram (Figure 4.17) indicates, that the background increase in Ks

(here: Figure 4.16) is likely to be based on other particles instead of ghosts. The
ghost histograms are comparable, whereas the PDGm approach has slightly fewer
ghosts in the peak area of Ks, but contrary more ghosts within the peak area of Λ.

The Armenteros-Podolanski plots for Ks confirm the already identified problems
of the new approach. Whereas on the left plot of Figure 4.18, the PDGm approach, the

57

Deep Learning for Identification of Short-Lived Particles

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
]2m [GeV/c

0

100

200

300

400

500

600

700

Ks/Ghost M

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
]2m [GeV/c

0

200

400

600

800

1000

1200

Lambda/Ghost M

Figure 4.17: Histograms of ghost mass spectra for Ks and Λ. Comparison of ANN4FLES
based on m and PDGm (red) against m and pt (blue).

background produced by Λ was rejected quite good, the pt approach contrary offers
the same pattern as the already existing method of KFPF without neural networks.
Here, the Λ background is more visible after the competition with pt compared to
PDGm. That also leads to a high amount of entries in the overlapping zone of Ks

and Λ in the Armenteros plots, whereas in the PDGm approach, the arch of Ks is the
brightest pattern.

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
)-

L
+p+

L
)/(p-

L
-p+

L
 (pα

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 [G
eV

/c
]

tq

Armenteros
Entries 244551
Mean x 0.1325
Mean y 0.1471
Std Dev x 0.5438
Std Dev y 0.1135

0

100

200

300

400

500

600
Armenteros

Entries 244551
Mean x 0.1325
Mean y 0.1471
Std Dev x 0.5438
Std Dev y 0.1135

Ks Armenteros

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
)-

L
+p+

L
)/(p-

L
-p+

L
 (pα

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 [G
eV

/c
]

tq

Armenteros
Entries 246278
Mean x 0.1367
Mean y 0.1468
Std Dev x 0.5442
Std Dev y 0.1131

0

100

200

300

400

500

600

700

800

900Armenteros
Entries 246278
Mean x 0.1367
Mean y 0.1468
Std Dev x 0.5442
Std Dev y 0.1131

Ks Armenteros

Figure 4.18: Armenteros-Podolanski plots of total spectra for Ks with existing ANN4FLES
competition using PDGm (left) and pt (right).

For Λ’s Armenteros-Podolanski plots, however, it is difficult to mention differ-
ences, as both plots look very similar in regard to visible patterns. The pt approach
has slightly more entries indicated by the same color compared to the PDGm ap-
proach. Nevertheless, in both plots the pattern of Ks is gone, since the background
produced by Ks is as large as the produced background by other particles.

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
)-

L
+p+

L
)/(p-

L
-p+

L
 (pα

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 [G
eV

/c
]

tq

Armenteros
Entries 303167
Mean x 0.3123
Mean y 0.1353
Std Dev x 0.5231
Std Dev y 0.1168

0

1000

2000

3000

4000

5000

Armenteros
Entries 303167
Mean x 0.3123
Mean y 0.1353
Std Dev x 0.5231
Std Dev y 0.1168

Lambda Armenteros

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
)-

L
+p+

L
)/(p-

L
-p+

L
 (pα

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 [G
eV

/c
]

tq

Armenteros
Entries 301440
Mean x 0.3099
Mean y 0.1355
Std Dev x 0.5236
Std Dev y 0.1171

0

500

1000

1500

2000

2500

3000

3500

4000

4500Armenteros
Entries 301440
Mean x 0.3099
Mean y 0.1355
Std Dev x 0.5236
Std Dev y 0.1171

Lambda Armenteros

Figure 4.19: Armenteros-Podolanski plots of total spectra for Λ with existing ANN4FLES
competition using PDGm (left) and pt (right).

58

Deep Learning for Identification of Short-Lived Particles

Finally, the invariant mass histograms are shown (Figure 4.20), including the
S/B-ratio and significance values of the new results. For the ANN4FLES approach
with mass and PDG mass, the values for S/B-ratio for Ks and Λ were 4.16 and
7.88 respectively - for significance, 144 and 216. The existing method had a S/B-
ratio of 3.58 (Ks) and 8.06 (Λ), and significance 149 and 213 respectively. Hence,
compared to the other ANN4FLES approach, the S/B-ratio was increased by the
network based on transverse momentum and mass. But in comparison to the existing
method, it performed better on Ks only. The significance of Λ dropped from 216 to
213, whereas the significance of Ks increased from 144 to 149. Thus, the fluctuation
in the background of Λ in relation to the signal has become larger using pt. On the
other hand, the background fluctuation of Ks was reduced slightly.

0.5 0.6
]2 [GeV/c-π+π invm

0

2000

4000

E
nt

ri
es

-π+π→SK

2 = 3.8 MeV/cσ SK

 = 149S+BS/B = 4.42 S/

1.1 1.15
]2 [GeV/c-π pinvm

0

10000

20000

E
nt

ri
es

-πp→Λ

2 = 1.4 MeV/cσ Λ

 = 213S+BS/B = 7.79 S/

Figure 4.20: Invariant mass distributions of Ks = π+π− and Λ = pπ−, including signal-
background ratio and significance for the ANN4FLES approach with mass and transverse
momentum.

Summarized, using either PDG mass or transverse momentum does not offer huge
differences in the final results. Both approaches provide comparable and good results
and, at least for Ks, they always achieve higher S/B-ratios. They both accomplished
their task in improving the S/B-ratio, but so did the existing method of KFPF.

59

Conclusion

Chapter 5

Conclusion

Scientists around the globe use heavy-ion physics experiments to gain insights in
the structure of our universe. The future CBM experiment at FAIR will complement
the already existing heavy-ion research programs of other facilities by its unique
capabilities to investigate rare short-lived particles with a high interaction rate of up
to 10 MHz and research of matter under extreme baryonic densities.

It was shown that the reconstruction of short-lived particles requires a full event
reconstruction, as, due to their short lifetime, they will not appear in any detector
responses directly and can, hence, only be measured indirectly. Combined with the
high interaction rate, fast algorithm packages for online reconstruction are required.
The data streams produced by detector responses are too large to be stored entirely
and since short-lived particles are of scientists’ interest, the whole event selection
has to be performed in real-time, including the reconstruction of decay chains. The
Kalman Filter Particle Finder is such a library that is able to reconstruct more than
150 decays.

In recent years, machine learning algorithms and neural networks in particular
have become popular in almost all research disciplines. Neural networks provide
a powerful tool whose capabilities have not been fully explored yet. In heavy-ion
physics experiments, these tools can be used for several tasks, such as within the
reconstruction of events, to classify physics data or to solve algorithmic problems
that are otherwise computational expensive.

Therefore, the application of neural networks within the packages required for
the CBM experiment is investigated. On the one hand, they can improve the physi-
cists’ analysis. Neural networks and machine learning algorithms can be used to
classify particles, dynamically apply cuts to data, or to find patterns that are difficult
to find otherwise. Furthermore, one can use generated simulated data to train a
neural network by supervised learning. Here, the true outcomes are known and the
improvements in high quality physics models increase the powerful capabilities even
more. This allows to produce an almost arbitrary amount of training data, which is
not possible in many cases where neural networks are in use.

On the other hand, neural networks are complex systems that require precise
analyses. Although the general principles and mathematics of neural networks are

61

Conclusion

known, it is almost impossible to make precise predictions about complex and deep
architectures. That behavior is what gives neural networks the image of a black-box.
However, the ongoing researches in the machine learning areas provide ever more
certainty and the increase in machine learning algorithm applications indicate their
potential.

The work group developed a fast C++ package called ANN4FLES, providing
several neural network architectures for the usage in the CBM experiment. In the
present thesis, the standalone version of ANN4FLES is used to train neural networks
for the specific tasks. Then, pre-trained networks are included into the FLES package
for the first time. A neural network based approach for the identification of short-
lived particles in a mother particle competition of the KFPF package was studied.
Previous work has already shown that neural networks can solve the task, with results
comparable to the existing method.

The studied particles are Ks → π+π− and Λ → pπ−. Both, Ks-meson and
Λ-hyperon are neutral particles that consist of strange quarks. Since theoretical
predictions assume that increased strangeness production might be an indicator for
deconfined matter and both particles are abundantly present in the events at energy
ranges of the CBM experiment, they are considered as reliable carriers of information
about the collision’s properties.

The existing method is based on the distances of the particle candidate’s mass
values to the respective known mass distribution peak. The first neural network
based approach follows the idea of using mass and PDG mass values as an input
for the neural network, to classify the best matching mother particle. The present
thesis has shown that the neural network based approach using particle candidate’s
mass and PDG mass can be improved by a more complex neural network architectures.

However, previous work also suggested to adjust the approach by using different
input data for the neural network. In this thesis, it was also shown that the approach
using particle’s mass and transverse momentum works comparable to the presented
approach using mass and PDG mass values.

Recapitulating the results using ANN4FLES, both competitions worked as ex-
pected and compared to KFPF without competition, both seem to increase the quality
of the reconstruction slightly. For instance, it was shown that the signal-background-
ratio was increased on average by both approaches. This indicates that both neural
networks rejected background particles more than signal particles. The differences
between the ANN4FLES approach with mass and PDG mass in comparison to mass
and transverse momentum were negligibly small.

Nevertheless, the existing method in KFPF also produced almost equal results.
For the identification of Ks and Λ in particular, the neural network approaches can
help to increase the quality of data, but for the general usage of the CBM experiment,
the neural network based approach is not considered as required. Furthermore, other
particles’ quality is not studied in this thesis. The neural networks will likely have an
effect on other particles as well, and a classification on Ks and Λ only will most likely

62

Conclusion

have negative effects to other particles if they do not take part in another competition.

Generally, for future work it has to be considered to investigate how neural net-
works perform in classifying either all candidates that are selected for the competition
or by increasing their possibilities with thresholds. Even though the former approach
requires a more complex architecture, the currently studied approaches classify only
binary between Ks and Λ. This, in fact, limits the networks’ performances as they
are not allowed to identify the input as something else than the respective particles
and forbids to reject an input completely, classifying it as background. If a particle is
considered as a possible candidate, in binary classification, the prediction is done
regardless of uncertainties. Here, thresholds can be used, such that only particles that
are classified with certainty survive the competition and others are rejected. This
might increase the physics quality even more.

Furthermore, it has to be studied how much impact the competition has in regard
to the final results. The raw classification performance of both networks with an
accuracy of more than 98% suggests that the classification in Ks and Λ is not the
limiting factor. Either, the already mentioned multi-classification can improve the
final results even more, or it has to be considered if the competition in general is
limited with its impact to final results.

Summarized, all presented particle competitions provide a good performance
in rejecting more background particles than signal particles for the studied decays
Ks → π+π− and Λ → pπ−. Hence, all competitions increase the physics analysis
quality for Ks-mesons and Λ-hyperons. The usage of deep learning techniques to
solve the task efficiently leads to promising results and should be studied in more
detail.

63

Zusammenfassung

Chapter 6

Zusammenfassung

Forschende auf der ganzen Welt nutzen Schwerionen-Experimente, um Erkenntnisse
über die Struktur des Universums zu gewinnen. Das zukünftige CBM-Experiment
an der FAIR-Teilchenbeschleunigeranlage wird bestehende Forschungsprogramme
anderer Einrichtungen dahingehend ergänzen, dass CBM einzigartige Möglichkeiten
bieten wird, kurzlebige Teilchen zu erforschen. Ein weiterer Schwerpunkt des Exper-
iments ist die Erforschung von Phasenübergängen der Materie unter extrem hohen
baryonischen Dichten.

Das Aufspüren seltener Teilchen erfordert eine häufige Wiederholung des Exper-
iments, weshalb das CBM-Experiment Teilchenkollisionen mit einer Interaktionsrate
von bis zu 10 MHz durchführen wird. Da bei diesen Kollisionsraten nicht alle Kol-
lisionen vollständig abgespeichert werden können, birgt diese Herangehensweise
zusätzliche Herausforderungen. Seltene kurzlebige Teilchen werden nicht im De-
tektorsystem erkannt, da ihre Lebensdauer nicht ausreicht, um einen der Detektoren
zu erreichen. Dies bedeutet, dass für die Erkennung ebendieser Teilchen eine voll-
ständige Rekonstruktion der Teilchenkollision nötig ist - inklusive der Rekonstruktion
von Zerfallsketten. Nach der vollständigen Rekonstruktion kann man anhand der
vermuteten Teilchen das entsprechende Ereignis abspeichern.

Für diese Selektion von Ereignissen sind Hochleistungsalgorithmen entwickelt
worden, die innerhalb des First Level Event Selection Pakets verschiedenste Aufgaben
bewältigen. Die Rekonstruktion von Zerfallsketten wird dabei von dem Kalman Filter
Particle Finder (KFPF) Paket durchgeführt.

In der vorliegenden Arbeit wird eine Methode des KFPF Pakets mit vortrainierten
neuronalen Netzen erweitert, um die Leistung einer seiner Kernaufgaben zu verbessern:
die Identifikation von Partikeln. Partikel, die direkt aus der Kollision heraus entste-
hen, sind Mutterpartikel. Durch die enormen Energien, die auf die Teilchen wirken,
durch Kollisionen mit anderen Teilchen oder durch Kollisionen mit den Detektoren,
zerfallen diese Teilchen häufig. Die daraus resultierenden Partikel werden Tochter-
partikel genannt. Genau hier knüpft die vorliegende Arbeit an.

Zur Rekonstruktion dieser Zerfallsprozesse werden mögliche Mutterpartikel-
Kandidaten erzeugt. Anschließend durchlaufen diese möglichen Kandidaten einen
Wettbewerb, in dem jeweils der best-passendste Kandidat ausgewählt wird, während-

65

Zusammenfassung

dessen der andere verworfen wird. Fälschlicherweise selektierte Mutterpartikel
produzieren Störsignale, wodurch die physikalische Analyse negativ beeinträchtigt
wird. Daher ist ein guter Wettbewerb wichtig, um Störsignale zu reduzieren.

Kurz gesagt: Die bestehende Wettbewerbsmethode vergleicht die Distanz der
rekonstruierten Partikelmasse mit der für den Partikeltyp typische Partikelmasse
(PDG-Masse). Der Partikel, der näher an seiner Soll-Masse liegt, wird selektiert.

Es werden zwei Deep Learning Ansätze präsentiert, die diese Aufgabe übernehmen
sollen. Dabei werden insbesondere die beiden neutralen Teilchen Λ (Hyperon) und
Ks (Meson) betrachtet. Der erste Ansatz nutzt, ähnlich zur bestehenden Methode,
die rekonstruierten Partikelmassen und Soll-Massen der entsprechenden Kandidaten
und klassifiziert damit, ob es sich um ein Λ oder Ks Mutterteilchen handelt.

Es wird gezeigt, dass beide Ansätze eine gute Klassifizierungsleistung bieten.
In der Test-Phase des neuronalen Netzes erkennen die neuronalen Netze beider An-
sätze die Partikel mit einer Genauigkeit von über 98%. Anschließend werden die
vortrainierten Netze innerhalb des KFPF Pakets eingesetzt und mit den von KFPF
bereitgestellten Leistungswerkzeugen bewertet. Auch hier schneiden die neuronalen
Netze gut ab.

Zwischen beiden Netzen gibt es bezüglich der Erkennungsraten nur vernachläs-
sigbar kleine Unterschiede und auch innerhalb des KFPF Pakets ist die Leistung der
beiden Ansätze vergleichbar. Im Vergleich zur bestehenden Methode erwiesen sich
die neuronalen Netze leicht besser in Bezug auf die Reduktion von Störsignalen, also,
falsche Partikel wurden im Durchschnitt besser herausgefiltert. Allerdings wurden
hier auch nur Λ- und Ks-Partikel berücksichtigt, sodass der Einfluss auf andere Par-
tikel nicht bewertet werden kann. Es wird daher empfohlen, die Klassifizierung auf
mehrere Partikel auszuweiten, um andere Partikel in die Analyse mit einbeziehen zu
können.

66

LIST OF FIGURES

List of Figures

1.1 The Standard Model of particle physics, including the six flavors
of quarks, three types of leptons with their respective neutrinos and
particles responsible for interactions. [4] 1

1.2 Relativistic heavy-ion collisions as a tool to understand the structure
and behavior of matter. Starting from the left, particles collide within
the collision overlap zone, whereas particles that do not take part
in the collision are called spectators. Under extreme conditions,
colliding particles transform into Quark Gluon Plasma (QGP), where
deconfinement allows quarks to move freely and form to hadrons
(Hadronization). In the kinetic freeze-out, the hadron gas cools down
further below the point where new hadrons can be formed. The
existing hadrons fly into the detector setup and the collision can be
reconstructed. [8] . 2

1.3 Quantum-Chromodynamics (QCD) phase diagram: temperature on
y-axis, density on x-axis. The dark blue arrow indicates the research
area of CBM (FAIR), the red arrow shows the region of STAR (RHIC)
and ALICE (LHC). The areas in blue and orange are studied in
particle physics experiments around the globe. [11] 3

1.4 Starting from the primary vertex, particles fly in many directions.
Several of them tend to decay at the so called secondary vertices into
daughter particles. The decaying particle is called mother particle. [22] 5

2.1 Overview of experimental complexes Gesellschaft für Schwerionen-
forschung (GSI) in blue and Facility for Antiproton and Ion Re-
search (FAIR) in red. [25] . 7

2.2 Planned detector setup of the future CBM experiment at FAIR: par-
ticle beam direction from left to right. RICH, TRD and ECAL are
removed in case of muon setup, whereas RICH is replaced by MuCh.
[21] . 8

2.3 Visualization of the Data AcQuisition (DAQ) and event selection at
the CBM experiment compared to conventional multi-level trigger
stages in other heavy-ion experiments. [21] 10

2.4 Reconstruction of an event. The detector planes are visualized in
green, particles are colored depending on their properties and high-
lighted Ω̄+ → Λ̄K+ → π+p̄K+ decay chain. [20] 11

2.5 Flowchart of the First Level Event Selector (FLES) package that
is used in the CBM experiment to evaluate detector response data
streams in regard to the interest of physicists. [20] 12

67

LIST OF FIGURES

2.6 Selection scheme of the Kalman Filter Particle Finder (KFPF) pack-
age, including the recently added Missing-Mass method for the re-
construction of neutral particles (yellow). [21] 14

2.7 Decay scheme of particles reconstructed by the Kalman Filter Particle
Finder (KFPF) package. The package is able to reconstruct more
than 150 particle decays. The investigated particles in this thesis
decay as follows: Ks → π+π− ; Λ → pπ−. [21] 15

2.8 Histograms of total spectra for Ks and Λ masses. Comparison of
existing mother particle competition (green) and no competition (black). 20

2.9 Histograms of signals for Ks and Λ masses. Comparison of existing
mother particle competition (green) and no competition (black). . . 21

2.10 Histograms of background for Ks and Λ masses. Comparison of
existing mother particle competition (green) and no competition (black). 21

2.11 Histograms of ghosts for Ks and Λ masses. Comparison of existing
mother particle competition (green) and no competition (black). . . 21

2.12 Armenteros-Podolanski plots with total spectra for Ks without (left)
and with competiton (right). 22

2.13 Armenteros-Podolanski plots for Λ without (left) and with competi-
ton (right). 22

2.14 Invariant mass distributions of Ks = π+π− and Λ = pπ− for KFPF
without competition, including signal-background ratio and signifi-
cance. 23

2.15 Invariant mass distributions of Ks = π+π− and Λ = pπ− for KFPF
with existing competition, including signal-background ratio and
significance. 24

3.1 Visualization of the 2-dimensional hyperplane in red (Equation 3.8),
separating the two classes 0 (blue area) and 1 (green area). Input pairs
(1, 0), (0, 1), (1, 1) are cases where logical x1 ∨ x2 should return 1.
All these cases are above the red classification line. Pair (0, 0) case
should return 0 and is located below the line. Therefore, all possible
cases are classified correctly. 27

3.2 Illustration of a Multi-Layer Perceptron (MLP) with 4 input neurons
forming the input layer (green), 5 neurons building one hidden layer
(blue), and 1 output neuron in the output layer (yellow). 28

3.3 Plot of the Sigmoid activation function σ(x) = 1
1+exp(−x)

. In binary
classification tasks, this function is often in use when the output
layer consists of a single neuron, inferring the class by output ≈ 0
or output ≈ 1 respectively. Within x ∈ [−5,+5], uncertainty can be
represented clearly in the neuron’s output. 29

3.4 Visualizations of ReLU-, LReLU- and Swish-function, which are
popular for hidden layer activation. 30

3.5 Visualization of dropout. On the left side, a standard fully connected
neural network with two hidden layers is shown. On the right side, the
network’s state after applying dropout in the input- and hidden-layers
is shown. Crossed neurons are dropped. [65] 31

68

LIST OF FIGURES

3.6 Visualization of a possible R3 output space that could represent a loss
function’s surface (left) with its corresponding contour-plot (right).
Gradient descent tries to find a minima in the direction of steepest
descent of the loss function. The trajectory of gradient descent is
confined to the parameter space; here, x-y plane. 34

3.7 Visualization of the self-information function by Shannon (left) and
the entropy as expected value of self-information. 38

3.8 Visualization of the binary cross-entropy loss BCE. For each output
neuron, the loss can be calculated, depending on if the neuron repre-
sents the true class (orange) or not (blue). Whereas small differences
between prediction and true outcome lead to low loss values, the
opposite case leads to an infinitely large error. 38

3.9 Neural network used for previous work [23], classifying the best
fitting mother particle for π− based on the mass and PDG mass
values of both candidates. 41

3.10 Total mass spectra ofKs (left) andΛ (right) using logarithmic scaling.
These histograms were created by [23]. 41

3.11 Reconstructed signal mass spectra of Ks (left) and Λ (right) using
logarithmic scaling. These histograms were created by [23]. 42

3.12 Reconstructed background mass spectra of Ks (left) and Λ (right)
using logarithmic scaling. These histograms were created by [23]. . 42

3.13 Reconstructed ghost mass spectra of Ks (left) and Λ (right) using
logarithmic scaling. These histograms were created by [23]. 43

3.14 The graphical user interface of ANN4FLES at its current state. . . . 43

4.1 Visualization of the procedure: Starting with the extraction of data
within the KFPF package, followed by the training in ANN4FLES
standalone. Pre-trained network (here represented by weights) is
loaded into the ANN4FLES package recently included in the ROOT
framework. On a different set of data, the classification performance
is then evaluated within KFPF. 46

4.2 Deep learning architecture used to classify Ks and Λ, using 3 hidden
layers with 8 neurons each, hidden activation function LReLU. Out-
put layer consists of two neurons with softmax activation and cross
entropy loss. Here, based on m and PDGm for each candidate. . . . 50

4.3 ANN4FLES and PyTorch accuracies for training and validation, us-
ing mass and PDG mass over 100 epochs with a peak performance
of 98.6% in the validation set. The classification is based on m and
PDGm of each candidate. ANN4FLES seems to learn faster than
PyTorch here. However, both achieve a high accuracy on validation set. 50

4.4 Histograms of total spectra for Ks (left) and Λ (right) masses. Com-
parison of existing mother particle competition (green), no competi-
tion (black) and competition by ANN4FLES (red). 52

4.5 Histograms of signals for Ks (left) and Λ (right) masses. Compari-
son of existing mother particle competition (green), no competition
(black) and ANN4FLES (red). 52

69

LIST OF FIGURES

4.6 Histograms of background for Ks (left) and Λ (right) masses. Com-
parison of existing mother particle competition (green), no competi-
tion (black) and ANN4FLES (red). 52

4.7 Histograms of ghosts for Ks (left) and Λ (right) masses. Comparison
of existing mother particle competition (green) and no competition
(black) and ANN4FLES (red). 53

4.8 Armenteros-Podolanski plots with total spectra for Ks with existing
competition (left) and with ANN4FLES based competition (right). . 53

4.9 Armenteros-Podolanski plots for Λ with the existing competition
(left) and with ANN4FLES based competition (right). 54

4.10 Invariant mass distributions of Ks = π+π− and Λ = pπ− for the
default competition, including signal-background ratio and significance. 54

4.11 Invariant mass distributions of Ks = π+π− and Λ = pπ−, including
signal-background ratio and significance for the ANN4FLES approach. 55

4.12 Deep learning architecture used to classify Ks and Λ, using 3 hidden
layers with 8 neurons each, hidden activation function LReLU. Out-
put layer consists of two neurons with softmax activation and cross
entropy loss. Here, based on m and pt of each candidate. 55

4.13 ANN4FLES and PyTorch accuracies for training and validation, us-
ing mass and transverse momentum over 100 epochs with a peak
performance of more than 98% in the validation set. Here, classifica-
tion based on m and pt of each candidate. PyTorch seems to learn
slightly faster than ANN4FLES on m and pt. However, both achieve
high accuracy on the validation set again. 56

4.14 Histograms of total mass spectra for Ks and Λ. Comparison of
ANN4FLES based on m and PDGm (red) against m and pt (blue). . 57

4.15 Histograms of signal mass spectra for Ks and Λ. Comparison of
ANN4FLES based on m and PDGm (red) against m and pt (blue). . 57

4.16 Histograms of background mass spectra for Ks and Λ. Comparison
of ANN4FLES based on m and PDGm (red) against m and pt (blue). 57

4.17 Histograms of ghost mass spectra for Ks and Λ. Comparison of
ANN4FLES based on m and PDGm (red) against m and pt (blue). . 58

4.18 Armenteros-Podolanski plots of total spectra for Ks with existing
ANN4FLES competition using PDGm (left) and pt (right). 58

4.19 Armenteros-Podolanski plots of total spectra for Λ with existing
ANN4FLES competition using PDGm (left) and pt (right). 58

4.20 Invariant mass distributions of Ks = π+π− and Λ = pπ−, includ-
ing signal-background ratio and significance for the ANN4FLES
approach with mass and transverse momentum. 59

70

REFERENCES

References

[1] E. Rutherford, ‘‘The scattering of α and β particles by matter and the structure
of the atom,’’ Philos. Mag., vol. 21, p. 669, 1911.

[2] G. Zweig, An SU(3) model for strong interaction symmetry and its breaking.
Version 2, pp. 22–101. 2 1964.

[3] M. Gell-Mann, ‘‘A Schematic Model of Baryons and Mesons,’’ Phys. Lett.,
vol. 8, pp. 214–215, 1964.

[4] MissMJ, ‘‘Standard model of elementary particles.’’ https://en.wikipedia.
org/wiki/File:Standard_Model_of_Elementary_Particles.svg, 2013.
Source: PBS NOVA [1], Fermilab, Office of Science, United States Department
of Energy, Particle Data Group. Copyright MissMJ, licensed under Creative
Commons Attribution 3.0 Unported license.

[5] I. Kisel, Superphysics and Supercomputers: Introduction to Experimental
Physics. August 2021.

[6] U.S. Department of Energy, ‘‘DOE Explains: Quarks and Gluons.’’ https://
www.energy.gov/science/doe-explainsquarks-and-gluons. Accessed on
April 1, 2023.

[7] E. Fokas, G. Kraft, H. An, and R. Engenhart-Cabillic, ‘‘Ion beam radiobiology
and cancer: Time to update ourselves,’’ Biochimica et Biophysica Acta (BBA) -
Reviews on Cancer, vol. 1796, no. 2, pp. 216–229, 2009.

[8] C. Shen, ‘‘Relativistic Heavy-Ion Collisions.’’ https://chunshen1987.

github.io/, accessed 2023.

[9] ‘‘CBM - Inside a Neutron Star.’’ https://www.gsi.de/

forschungbeschleuniger/fair/forschung/cbm_im_inneren_eines_

neutronensterns. Accessed on April 1, 2023.

[10] ‘‘STAR - Physics.’’ https://www.star.bnl.gov/central/physics/. Ac-
cessed on April 1, 2023.

[11] G. Aarts, F. Attanasio, B. Jäger, E. Seiler, D. Sexty, and I.-O. Stamatescu,
‘‘QCD at nonzero chemical potential: recent progress on the lattice,’’ 2014.

[12] K. C. Meehan, ‘‘The fixed-target experiment at STAR,’’ Journal of Physics:
Conference Series, vol. 742, p. 012022, aug 2016.

71

https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://www.energy.gov/science/doe-explainsquarks-and-gluons
https://www.energy.gov/science/doe-explainsquarks-and-gluons
https://chunshen1987.github.io/
https://chunshen1987.github.io/
https://www.gsi.de/forschungbeschleuniger/fair/forschung/cbm_im_inneren_eines_neutronensterns
https://www.gsi.de/forschungbeschleuniger/fair/forschung/cbm_im_inneren_eines_neutronensterns
https://www.gsi.de/forschungbeschleuniger/fair/forschung/cbm_im_inneren_eines_neutronensterns
https://www.star.bnl.gov/central/physics/

REFERENCES

[13] ‘‘Powering CERN.’’ https://home.cern/science/engineering/

powering-cern. Accessed on April 1, 2023.

[14] I. Kisel and for CBM Collaboration, ‘‘Event Topology Reconstruction in
the CBM Experiment,’’ Journal of Physics: Conference Series, vol. 1070,
p. 012015, aug 2018.

[15] I. Kisel, I. Kulakov, and M. Zyzak, ‘‘Standalone First Level Event Selection
Package for the CBM Experiment,’’ IEEE Transactions on Nuclear Science,
vol. 60, no. 5, pp. 3703–3708, 2013.

[16] F. Sergeev, E. Bratkovskaya, I. Kisel, and I. Vassiliev, ‘‘Deep learning for quark-
gluon plasma detection in the CBM experiment,’’ International Journal of
Modern Physics A, vol. 35, p. 2043002, Nov. 2020.

[17] A. Seryakov and D. Uzhva, ‘‘Convolutional Neural Network for Centrality
Determination in Fixed Target Experiments,’’ Physics of Particles and Nuclei,
vol. 51, pp. 331–336, 2020.

[18] Łukasz Kamil Graczykowski, M. Jakubowska, K. R. Deja, and M. Kabus,
‘‘Using Machine Learning for Particle Identification in ALICE,’’ 2022.

[19] P. Senger and V. Friese, ‘‘CBM Progress Report 2022,’’ Tech. Rep. CBM PR
2022, Darmstadt, 2022.

[20] M. Zyzak, Online selection of short-lived particles on many-core computer ar-
chitectures in the CBM experiment at FAIR. PhD thesis, J. W. Goethe University,
Frankfurt (Main), 2016.

[21] P. Kisel, KF Particle Finder Package: Missing Mass Method for Reconstruction
of Strange Particles in CBM (FAIR) and STAR (BNL) Experiments. PhD thesis,
Goethe U., Frankfurt (main), 2023.

[22] S. Gorbunov, On-line reconstruction algorithms for the CBM and ALICE exper-
iments. doctoralthesis, Universitätsbibliothek Johann Christian Senckenberg,
2013.

[23] A. Banerjee, I. Kisel, and M. Zyzak, ‘‘Artificial neural network for identification
of short-lived particles in the CBM experiment,’’ Int. J. Mod. Phys. A, vol. 35,
no. 33, p. 2043003, 2020.

[24] C. Sturm and H. Stöcker, ‘‘The Facility for Antiproton and Ion Research FAIR,’’
Physics of Particles and Nuclei Letters, vol. 8, pp. 865–868, 2011.

[25] ‘‘FAIR - Facility Overview.’’ https://www.gsi.de/en/

researchaccelerators/fair/the_machine, n.d. Accessed April 2,
2023.

[26] H. Stöcker, T. Stöhlker, and C. Sturm, ‘‘FAIR - Cosmic Matter in the Lab-
oratory,’’ Journal of Physics: Conference Series, vol. 623, p. 012026, may
2015.

[27] A. Einstein, Zur Elektrodynamik bewegter Körper. Leipzig: Teubner, 1905.

72

https://home.cern/science/engineering/powering-cern
https://home.cern/science/engineering/powering-cern
https://www.gsi.de/en/researchaccelerators/fair/the_machine
https://www.gsi.de/en/researchaccelerators/fair/the_machine

REFERENCES

[28] V. Friese and for the CBM Collaboration, ‘‘The high-rate data challenge: com-
puting for the CBM experiment,’’ Journal of Physics: Conference Series,
vol. 898, p. 112003, oct 2017.

[29] Teklishyn, Maksym, ‘‘The silicon tracking system of the cbm experiment at
fair,’’ EPJ Web Conf., vol. 171, p. 21003, 2018.

[30] B. Friman, C. Höhne, J. Knoll, S. Leupold, J. Randrup, R. Rapp, and P. Senger,
eds., The CBM Physics Book: Compressed Baryonic Matter in Laboratory
Experiments. Lecture Notes in Physics, Springer Berlin, Heidelberg, 1 ed.,
2011.

[31] J. Seguinot and T. Ypsilantis, ‘‘Photo-ionization and Cherenkov ring imaging,’’
Nuclear Instruments and Methods, vol. 142, no. 3, pp. 377–391, 1977.

[32] C. Bergmann, ‘‘Development and Test of a Transition Radiation Detector Pro-
totype for CBM @ FAIR,’’ Master’s thesis, Westfälische Wilhelms Universität
Münster, 2009.

[33] N. Herrmann, ed., Technical Design Report for the CBM Time-of-Flight System
(TOF). Darmstadt: GSI, 2014.

[34] I. E. Korolko, M. S. Prokudin, and Y. M. Zaitsev, ‘‘The CBM ECAL,’’ Journal
of Physics: Conference Series, vol. 798, p. 012164, jan 2017.

[35] F. Guber and I. Selyuzhenkov, eds., Technical Design Report for the CBM
Projectile Spectator Detector (PSD). Darmstadt: GSI, 2015.

[36] V. Friese, ‘‘Simulation and reconstruction of free-streaming data in CBM,’’
Journal of Physics: Conference Series, vol. 331, p. 032008, 12 2011.

[37] Workman, R. L. et al. (Particle Data Group), ‘‘Review of particle physics,’’
Prog. Theor. Exp. Phys., 083C01, vol. 2022, 2022.

[38] J. Rafelski and B. Müller, ‘‘Strangeness production in the quark-gluon plasma,’’
Phys. Rev. Lett., vol. 48, pp. 1066–1069, Apr 1982.

[39] J. de Cuveland and V. L. (for the CBM Collaboration), ‘‘A First-level Event
Selector for the CBM Experiment at FAIR,’’ Journal of Physics: Conference
Series, vol. 331, p. 022006, dec 2011.

[40] I. Kisel, I. Kulakov, and M. Zyzak, ‘‘Standalone first level event selection pack-
age for the cbm experiment,’’ in 2012 18th IEEE-NPSS Real Time Conference,
pp. 1–6, 2012.

[41] W. Cassing and E. L. Bratkovskaya, ‘‘Parton transport and hadronization from
the dynamical quasiparticle point of view,’’ Physical Review C, vol. 78, sep
2008.

[42] M. Bleicher, E. Zabrodin, C. Spieles, S. A. Bass, C. Ernst, S. Soff, L. Bravina,
M. Belkacem, H. Weber, H. Stöcker, and W. Greiner, ‘‘Relativistic hadron-
hadron collisions in the ultra-relativistic quantum molecular dynamics model,’’
Journal of Physics G: Nuclear and Particle Physics, vol. 25, p. 1859, sep 1999.

73

REFERENCES

[43] V. Akishina and I. Kisel, ‘‘Parallel 4-Dimensional Cellular Automaton Track
Finder for the CBM Experiment,’’ J. Phys. Conf. Ser., vol. 762, no. 1, p. 012047,
2016.

[44] V. Akishina, Four-dimensional event reconstruction in the CBM experiment.
PhD thesis, J. W. Goethe University, Frankfurt (Main), 2017.

[45] J. Kubát, ‘‘Reconstruction of strange hadrons in collisions of nuclei at RHIC,’’
Master’s thesis, Czech Technical University in Prague, Faculty of Nuclear
Sciences and Physical Engineering, Praha 1 - Staré Město, Břehová 7 - PSČ
115 19, August 2020.

[46] ‘‘GSI Scientific Report 2016,’’ Tech. Rep. GSI Report 2017-1, Darmstadt,
2017.

[47] I. Kisel and I. Kulakov and M. Zyzak, ‘‘KFParticleTopoReconstructor.cxx.’’ Git
repository, 2013. https://git.cbm.gsi.de/f.uhlig/KFParticle/-/blob/

master/KFParticle/KFParticleTopoReconstructor.cxx, Accessed: April
5, 2023, Version 1.0.

[48] Y. Gorbunov, ‘‘Star - armenteros podolanski plots.’’ https://www.star.bnl.
gov/~gorbunov/main/node48.html, 2010. Accessed on April 1, 2023.

[49] NVIDIA, ‘‘Deep Learning Super Sampling (DLSS).’’ https://www.nvidia.
com/de-de/geforce/technologies/dlss/, March 05 accessed 2023.

[50] NVIDIA, ‘‘NVIDIA RTX A6000.’’ https://www.nvidia.com/en-us/

design-visualization/rtx-a6000/, March 05 accessed 2023.

[51] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[52] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger, ‘‘Deep networks with
stochastic depth,’’ 2016.

[53] F. Rosenblatt, ‘‘The perceptron: a probabilistic model for information storage
and organization in the brain,’’ Psychological review, vol. 65 6, pp. 386–408,
1958.

[54] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning internal repre-
sentations by error propagation,’’ 1986.

[55] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification with
deep convolutional neural networks,’’ in Advances in Neural Information Pro-
cessing Systems (F. Pereira, C. Burges, L. Bottou, and K. Weinberger, eds.),
vol. 25, Curran Associates, Inc., 2012.

[56] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image recog-
nition,’’ 2015.

[57] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, ‘‘Deepface: Closing the gap
to human-level performance in face verification,’’ in 2014 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1701–1708, 2014.

74

https://git.cbm.gsi.de/f.uhlig/KFParticle/-/blob/master/KFParticle/KFParticleTopoReconstructor.cxx
https://git.cbm.gsi.de/f.uhlig/KFParticle/-/blob/master/KFParticle/KFParticleTopoReconstructor.cxx
https://www.star.bnl.gov/~gorbunov/main/node48.html
https://www.star.bnl.gov/~gorbunov/main/node48.html
https://www.nvidia.com/de-de/geforce/technologies/dlss/
https://www.nvidia.com/de-de/geforce/technologies/dlss/
https://www.nvidia.com/en-us/design-visualization/rtx-a6000/
https://www.nvidia.com/en-us/design-visualization/rtx-a6000/
http://www.deeplearningbook.org

REFERENCES

[58] J. Eshraghian and W. Lu, ‘‘The fine line between dead neurons and sparsity in
binarized spiking neural networks,’’ 01 2022.

[59] B. Xu, N. Wang, T. Chen, and M. Li, ‘‘Empirical evaluation of rectified activa-
tions in convolutional network,’’ 05 2015.

[60] P. Ramachandran, B. Zoph, and Q. V. Le, ‘‘Searching for activation functions,’’
CoRR, vol. abs/1710.05941, 2017.

[61] A. D. Rasamoelina, F. Adjailia, and P. Sinčák, ‘‘A review of activation function
for artificial neural network,’’ in 2020 IEEE 18th World Symposium on Applied
Machine Intelligence and Informatics (SAMI), pp. 281–286, 2020.

[62] M. A. Mercioni and S. Holban, ‘‘P-Swish: Activation Function with Learnable
Parameters Based on Swish Activation Function in Deep Learning,’’ in 2020
International Symposium on Electronics and Telecommunications (ISETC),
pp. 1–4, 2020.

[63] X. Ying, ‘‘An overview of overfitting and its solutions,’’ Journal of Physics:
Conference Series, vol. 1168, p. 022022, feb 2019.

[64] Z. Xie, F. He, S. Fu, I. Sato, D. Tao, and M. Sugiyama, ‘‘Artificial Neural
Variability for Deep Learning: On Overfitting, Noise Memorization, and Catas-
trophic Forgetting,’’ Neural Computation, vol. 33, pp. 2163–2192, 07 2021.

[65] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
‘‘Dropout: A simple way to prevent neural networks from overfitting,’’ Journal
of Machine Learning Research, vol. 15, pp. 1929–1958, 2014. Submitted 11/13;
Published 6/14.

[66] Y. Yao, L. Rosasco, and A. Caponnetto, ‘‘On early stopping in gradient descent
learning,’’ Constructive Approximation, vol. 26, no. 2, pp. 289–315, 2007.

[67] R. Tibshirani, ‘‘Regression shrinkage and selection via the lasso,’’ Journal
of the Royal Statistical Society: Series B (Methodological), vol. 58, no. 1,
pp. 267–288, 1996.

[68] A. E. Hoerl and R. W. Kennard, ‘‘Ridge regression: Biased estimation for
nonorthogonal problems,’’ Technometrics, vol. 12, no. 1, pp. 55–67, 1970.

[69] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proceedings of the 32nd Inter-
national Conference on Machine Learning (F. Bach and D. Blei, eds.), vol. 37
of Proceedings of Machine Learning Research, (Lille, France), pp. 448–456,
PMLR, 07–09 Jul 2015.

[70] P. Luo, X. Wang, W. Shao, and Z. Peng, ‘‘Towards understanding regularization
in batch normalization,’’ CoRR, vol. abs/1809.00846, 2018.

[71] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, ‘‘How does batch normalization
help optimization?,’’ in Advances in Neural Information Processing Systems
(S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, eds.), vol. 31, Curran Associates, Inc., 2018.

75

REFERENCES

[72] X. Li, S. Chen, X. Hu, and J. Yang, ‘‘Understanding the disharmony between
dropout and batch normalization by variance shift,’’ in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

[73] S. Ruder, ‘‘An overview of gradient descent optimization algorithms,’’ 2017.

[74] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ CoRR, vol. abs/1502.03167, 2015.

[75] PyTorch Contributors, ‘‘PyTorch Documentation: Data Handling.’’ https:

//pytorch.org/docs/stable/data.html, 2021. Accessed: March 25, 2023.

[76] A. Zhu, Y. Meng, and C. Zhang, ‘‘An improved adam algorithm using look-
ahead,’’ in Proceedings of the 2017 International Conference on Deep Learning
Technologies, ICDLT ’17, (New York, NY, USA), p. 19–22, Association for
Computing Machinery, 2017.

[77] Y. E. Nesterov, ‘‘A method of solving a convex programming problem with
convergence rate O(1/k2),’’ in Doklady Akademii Nauk, vol. 269, pp. 543–547,
Russian Academy of Sciences, 1983.

[78] M. D. Zeiler, ‘‘ADADELTA: An Adaptive Learning Rate Method,’’ 2012.

[79] D. S. Jones, Elementary Information Theory. Oxford New York: Clarendon
Press ; Oxford University Press, 1979.

[80] C. Broyden, ‘‘A new double-rank minimisation algorithm. preliminary report,’’
American Mathematical Society, Notices, vol. 16, p. 670, 1969.

[81] R. Fletcher, ‘‘A new approach to variable metric algorithms,’’ The Computer
Journal, vol. 13, pp. 317–322, 01 1970.

[82] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-
tala, ‘‘Pytorch: An imperative style, high-performance deep learning library.’’
https://pytorch.org/, 2019. Accessed April 2, 2023.

[83] F. Chollet and J. Allaire, ‘‘Keras.’’ https://github.com/keras-team/keras,
2015. Accessed April 2, 2023.

[84] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,
and X. Zheng, ‘‘Tensorflow: A system for large-scale machine learning.’’
https://www.tensorflow.org/, 2016. Accessed April 2, 2023.

[85] Frankfurt Institute for Advanced Studies, ‘‘ANN4EUROPE - Artificial Neural
Networks for the Data-Driven Revolution in European Science.’’ https://
fias.institute/de/projekte/ann4europe/, n.d. Accessed March 28, 2023.

76

https://pytorch.org/docs/stable/data.html
https://pytorch.org/docs/stable/data.html
https://pytorch.org/
https://github.com/keras-team/keras
https://www.tensorflow.org/
https://fias.institute/de/projekte/ann4europe/
https://fias.institute/de/projekte/ann4europe/

REFERENCES

[86] ‘‘torch.nn.Linear - pytorch 1.9.0 documentation.’’ https://pytorch.org/

docs/stable/generated/torch.nn.Linear.html, 2023. Accessed March 30,
2023.

[87] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ in 3rd
International Conference for Learning Representations, 2015. Published as a
conference paper at the 3rd International Conference for Learning Representa-
tions, San Diego, 2015.

77

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html

	Introduction
	Heavy-Ion Experiments
	Reconstruction of Events

	The CBM Experiment at FAIR
	Compressed Baryonic Matter (CBM) Experiment
	First Level Event Selection (FLES)
	Kalman Filter Particle Finder (KFPF)
	Particle Identification in the KFPF
	Performance Measurements in the KFPF
	KFPF Performance: Existing Competition

	Neural Networks and Deep Learning
	Perceptron: The Smallest Neural Network
	Problem of Linear Separability

	Multi-Layer Perceptron: Breaking Linearity
	Network Regularization Methods
	Learning Paradigms of Machine Learning
	Supervised Learning: Neural Network Training
	Information Theory and Cross-Entropy Loss
	ANN-Based Particle Identification in KFPF
	ANN4FLES: High Performance Neural Networks

	Deep Learning for Identification of Short-Lived Particles
	Extraction of Training Data in KFPF
	ANN4FLES Implementation in KFPF
	Deep Learning Classification: m+PDGm
	Deep Learning Classification: m+pt

	Conclusion
	Zusammenfassung
	List of Figures
	References

