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FIG. 1 Schematic relationships between the topics discussed in this Colloquium. The diagram emphasizes the close connections
between theory, computations (both computational science and data science as well as many elements from computer science)
and experiments.

and the synthesis of the elements in the Cosmos, see
Fig. 1. Experiments produce data volumes that range in
complexity and heterogeneity, thereby posing enormous
challenges to their design, their execution, and the sta-
tistical data analysis.

Theoretical modeling of nuclear properties is, in most
physical cases of interest, limited by the large amount of
degrees of freedom in quantum-mechanical calculations.
The analysis of experimental data and the theoretical
modeling of nuclear systems aims, as is the case in all
fields of physics, at uncovering the basic laws of motion
in order to make predictions and estimations, as well as
finding correlations and causations for strongly interact-
ing matter. The broad aims of nuclear physics as a field
correspond to a highly distributed scientific enterprise.
Experimental e↵orts utilize many laboratories worldwide,
each with unique operation, data acquisition, and anal-
ysis methods. Similarly, the scales of focus spanned in
theoretical nuclear physics lead to broad needs for algo-
rithmic methods and uncertainty quantification. These
e↵orts, utilizing arrays of data types across size and en-
ergy scales, create an ideal environment for applications
of ML methods.

II. MACHINE LEARNING FOR NUCLEAR PHYSICS IN
BROAD STROKES

Statistics, data science, and ML form important fields
of research in modern science. They describe how to
learn and make predictions from data, and enable the

extraction of key information about physical processes
and the underlying scientific laws based on large datasets.
As such, recent advances in ML capabilities are being
applied to advance scientific discoveries in the physical
sciences (Carleo et al., 2019; Deiana et al., 2021).

Ideally, ML represents the science of building models
to perform a task without the instructions being explic-
itly programmed. This approach introduces in practice
a hierarchy of mathematical operations that enable the
computer to learn complicated concepts by building them
out of simpler ones. In terms of a graphical representa-
tion, this can be visualized as a deep network of training
and learning operations, often just referred to as deep
learning (Goodfellow et al., 2016).

There exist many ML approaches; they are often split
into two main categories, supervised and unsupervised.
In supervised learning, training data are labeled and one
lets a specific ML algorithm learn and deduce patterns
in the datasets.

This allows one to make predictions about future
events and/or data not included in the training set. On
the other hand, unsupervised learning is a method for
finding patterns and relationship in datasets without any
prior knowledge of the system. Many researchers also op-
erate with a third category, dubbed reinforcement learn-
ing. This is a paradigm of learning inspired by behav-
ioral psychology, where actions are learned to maximize
reward. One may encounter reinforcement learning being
accompanied by supervised deep learning methods such
as deep ANN. Furthermore, what is often referred to as

Some key characteristics to take note of!
Computing at FAIR

Nuclei
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•FAIR houses broad and divers physics communities 
from atomic to particle physics, from theory to 
experiment, and very internationally oriented.
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Abstract

This Conceptual Design Report (CDR) presents the plans of the computing in-
frastructure for research at FAIR, Darmstadt, Germany. It presents the computing
requirements of the various research groups, the policies for the computing and storage
infrastructure, the foreseen FAIR computing model including the open data, software
and services policies and architecture for the periods starting in 2028 with the ”first
science (plus)” phase to the modularized start version of FAIR. The overall ambition
is to create a federated and centrally-orchestrated infrastructure serving the large di-
versity of the research lines present with su�cient scalability and flexibility to cope
with future data challenges that will be present at FAIR.
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Figure 8: The required amount of storage as a function of year with FS+ starting in 2028
and MSVc in 2032. The top panel depicts the requested disk space for fast access, whereas
the bottom panel presents the needed long-term storage space (archive). The contributions
of the various research lines are indicated by di↵erent colors. The dashed line shows the
used storage on the Lustre filesystem for FAIR Phase Zero activities. Copies of the raw
data at other FAIR facilities are not included, but required by law.

3.11.2 Storage requirements

The time evolution of the required disk storage and archive is shown in Fig. 8. It includes
the FS+ and MSVc scenarios with tentative starts in 2028 and 2032, respectively. For
FS+ (MSVc) the total available storage saturates to about 160 (210) PB accounting for
the requested number of years the data needs to be directly accessible. The largest storage
usage is by the CBM collaboration, followed by NUSTAR, and with the start of MSVc
by PANDA. All other research lines only contribute marginally to the required storage
capacity. Also here, we do not include non-FAIR related activities, such as ALICE.
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FAIR Computing “CDR”?
…and defining the necessary compute capacities…
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Figure 1: Sketch of the required compute capacity for a nominal FS+ year. The light-grey
area depicts the total required shared compute capacity for online and o✏ine computations
whereby the online part is averaged out over the year. The dark-grey area indicated the
required online computing capacity taking into account CBM (100 days), NUSTAR (180
days), HADES (30 days), and APPA (180 days). The dotted line represents the presently
used compute capacity at the GreenCube for FAIR Phase Zero activities. The dashed
line depicts the minimum required capacity at FAIR Tier0 which includes the maximum
online compute capacity plus data intensive tasks.

For the o✏ine computational activities - primarily for the production of derived data,
higher-level data analyses, Monte Carlo studies, and theoretical calculations - we estimated
a continuously available compute capacity of about 2.2 MHEPSpec06 whereby all FAIR
pillars require a significant share. Extrapolating towards the compute needs for MSVc,
we expect an increase of less than a factor of two in capacity with respect to FS+. More
precisely, we estimated a total shared compute capacity including both online and o✏ine
activities of about 4.5 MHEPSpec06 for which 1.9 MHEPSpec06 is instantly required
for online data taking assuming that CBM and PANDA can operate in parallel. Since
the experiments will not continuously request the online capacity to be available, it is
foreseen in our model to e↵ectively share online with o✏ine resources among all research
lines, thereby optimising for cost and energy e�ciency. To realise such model, it is of
utmost importance to provide a strong local compute center at the FAIR campus hosting
a significant fraction of the compute and storage resources for the FAIR communities.

Compute and storage capacities during FAIR operations

Figure 1 illustrates an overview of the required compute capacity for a nominal FS+ year.
It presents both the total required compute capacity and the fraction required for online
computing. We estimated the minimum compute capacity that would be required at
Tier0, i.e. at the local infrastructure at the FAIR campus. For this, the maximum online
compute requirements are supplemented with a minimum required fraction of additional
computational needs that strongly depends on processing large volumes of raw or partly-
derived data harvested by the experiments at FAIR. The remaining compute resources
(⇠40% of the total), indicated by “possible external contribution”, can be located at
another computing center outside the FAIR campus. Those tasks include computations
that do not depend on the availability of the data and allow for an asynchronous data
transfer, such as Monte Carlo simulations and theoretical calculations that support the

5

MSVc, perspectives for a “nominal year” 1 physical core (Intel E5-2680v4@2.4GHz) ~22 HEPSPEC06

Month

a)

b)

c)

Figure 9: Compute capacities for a nominal FS+ and MSVc year: a) FS+; b) MSVc with
PANDA and CBM running in parallel; c) MSVc with PANDA and CBM running sequen-
tially. The minimum FAIR Tier0 capacity is computed by summing up the maximum
online capacity with the fraction of class IIa-type computing that is IO/data intensive.
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FAIR and distributed computing?
…main buzzword: “federated computing”…

• Federation: the act of uniting 
smaller or more localised entities 
to create a larger entity for mutual 
benefit, with agreed mixture of 
common policies and local 
autonomy.


• Consolidation: the act of reducing 
the number of entities by 
dissolution of existing ones and 
creation of a single larger entity.



Computing model
…with a central role of F.A.I.R. …
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FAIR goes F.A.I.R.?
…bit more than just conceptual box on a diagram?

CBM 100 days

NUSTAR 180 days

HADES 30 days

APPA 180 days

maximum online computing 

+ IO/data-intensive computations 

• Align with open-science policies 
setup for GSI!


• FAIR-IT provides F.A.I.R.-
supportive base infrastructure


• Research lines are responsible 
for the “openness” of their data 
& software!



research. Conceptually, we concentrate on introducing the very minimum basic elements
and policies as a framework for researchers and their data whereby the finer-level details
will be up to the collaborations to implement. We, thereby, minimize the overhead in the
high-level data management services.

Table 49: An overview of policies, activities and potential services enabling the F.A.I.R.
principles and considered for FAIR computing.

Principles Policies & Services

Findable

• Centrally orchestrated storage and access of data.
• Consistent usage of Persistent IDentifiers (PID) such as Digital

Object Identifiers (DOI) for data and metadata.
• Expand the GATE environment available at GSI.
• Promote and support the open-source scientific software and ser-

vice repository (OSSR) within the ESCAPE collaboration.

Accessible

• Data and software produced and dedicated for FAIR communities
and publications centrally stored.

• Data will be accessible using standard http protocols, possibly with
XRootD on the frontend and Lustre at the backend.

• AAI will be token-based and integrated with eduGAIN in line with
ongoing concepts introduced within ESCAPE/EOSC.

• Data and software available under a suitable open licence (such as
GPL or CC BY).

Interoperable

• Participate in community-wide open-science initiatives, projects &
programs on institutional, national, and European levels.

• Follow-up the“Datalake” concept developed within ESCAPE.
• Support the OSSR service (see above) to encourage the use of

common software and services within the research domain.
• Use common AAI services together with partner institutes and

facilities (see above).
• Agree upon controlled metadata vocabularies within the research

domain of interest.

Reusable • Ensure a successful implementation of the principles described
above (“F.A.I.”), the reusability will follow naturally.
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FAIR Tier0
Storage Compute

Resource server

o https
o token access
o ssh

GSI IDP

ID & access token request

Software &
Services

User/client software

o OAuth2
o OpenID Connect

o Google
o ORCID ID
o EduGAIN

o authentication
o user identification

External HPC
ComputeStorage Software &

Services

Resource server

Data, software & service
exchange/synchronization

Cache

Authorization server

Figure 11: Sketch of the conceptual model to access FAIR resources. A community-wide authorization server will be used to provide tokens for
the user/client based on commonly used standards, e.g. OAuth and OpenID Connect (indicated in blue). The token-based communication with
resource servers will follow standard protocols, such as https, and, depending on type of user/client, provide a certain level of access to the compute
& storage resources (marked by green arrows). External HPC facilities and sites will be transparently linked to FAIR Tier0 resources based on
a federative compute model (red arrow), whereby the implementation and operational details are hidden to “common” researchers and users.
Privileged developers and IT experts will be able to use the same AAI mechanism to access lower-level processes, services and data.
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FAIR goes F.A.I.R.?
…in a cartoon representation
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EOSC – additionality to the web of FAIR data

WORLD WIDE WEB

INTERNET

NETWORKS

COMPUTERS

WEB OF FAIR DATAEUROPEAN OPEN SCIENCE CLOUD

Modelled after: World Wide Web - Wikipedia

“Web of FAIR data and services”

Karel Luyben - EOSC Association

“Open, trusted, federation of infrastructures 
enabling European researchers to store, share, 

process, analyse, and reuse digital objects.”
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Web of F.A.I.R. (& FAIR) data and services 
…the “black mirror” side of the EOSC dream

•It is a great vision! But still very far away from realising…

•Digital objects very divers (size, complexity, policies) among 
research disciplines: common standards needed.

•Very much focused towards the European level: what about 
international playfield (like at FAIR)?

•Sustainability of open-science funding schemes questionable: 
“pilot” thematic-oriented approach in the past, continuation?  

•Missing physics-driven “use cases” in our domain?

•Role of Artificial Intelligence? Ethical aspects?



FAIR goes F.A.I.R. in a nutshell
• Grid-like distributed computing is dead, long-live 

federated computing among large centers.


• Effective resource sharing at FAIR TIER-0 center, 
accounting for most of the data-driven computations. 


• Federated storage and computing with ‘local’ centers 
using Teralink network & commonly used standards.


• ‘Centralised’ data/software management —> most suited 
to incorporate F.A.I.R. principle for our diverse community, 
introduce and to minimise the operational overhead.


• Containerised approaches and other virtualisation 
methods for flexible compute operations serving diverse 
community & optimise usage.


• Data access using http, possibly with xrootd frontend, 
lustre backend; AAI using widely accepted standards, 
weblogin, token-based, eduGAIN.





Backup material



“federated” computing - who ordered that?

David Britton, University of Glasgow

• Federation allows composition of new solutions out of existing investment (but you can 
only rearrange the building blocks if you still have the building blocks).

• Federation enables decision making to be devolved “down” the hierarchy to where it 
best sits, improving choices and protecting against domination of one community or 
voice to the detriment of the rest. 

• Federation can empower communities in a way that consolidation does not. All these 
elements become particularly important as the scale grows.

• Federation encourages diversity, of ideas, solutions, and people. It can protect against 
“group think” and stagnation, and can provide resilience against single points of failure 
– both geographical and technological. 

• Federation enables low risk evaluation and testing of “future” technologies, in particular 
where they are driven by specific well motivated communities that would otherwise be 
overlooked or dismissed by a large scale operation with a consolidated approach.

• Federation allows smaller operations to benefit from the full scale of the federation. 
E.g., security, identity management, accounting and allocation; but also in the building 
of larger communities to share ideas and solutions.

• Federation allows leveraging of local resources that otherwise would not be available.



“federated” computing - who ordered that?

David Britton, University of Glasgow
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where it makes sense to do so 
(minimises costs; maximises 
quality)

Recognise that communities need 
gateway projects that worry about 
the (evolving) complexity for them.



FAIR Computing “CDR”?
…a couple of words on that…

• … focussed towards research IT, hence not enterprise IT!


• … aims towards a coherent vision for FAIR computing


• … supported by relevant stakeholders including you!


• … with a description of requirements based on best estimates


• … with commonly defined criteria 

• … FAIR players*: APPA,CBM,HADES,NUSTAR,PANDA,THEORY,BEAM


• … considering FAIR scenarios: FS(+) and MSV 

• … present status: submitted to ECE/ECSG for approval 

*ALICE uses large fraction of computing resources & strong connections with 
scientific IT@GSI, but considered as “outside” activity, different funding scheme, etc. 
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cases”, smaller scale, very diverse and broad 
communities, not necessarily requiring HPC, etc.


• Cost efficient operation of computing becoming important.
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…sensitive topic, hence very relevant!



FAIR-IT support vs research lines responsibilities

FAIR-IT support for research
• Responsibility: “at the end of the fibres from the experiment”.
• Define and setup interfaces between experiment/user and 

compute/storage.
• Promote as much as reasonably acceptable common 

interfaces, hard/software infrastructures etc.
• Provide VMs, cloud service to minimise “idle” computers.
• Support commonly-used services/frameworks, e.g. Fairroot, 

FairMQ, CDash, Gitlab, …
• Maintain a strong local scientifically-based IT team well 

integrated within the various experiments with network/
interface to experts outside FAIR (f.e. GEANT, ROOT, …).

…sensitive topic, hence very relevant!



R&D aspects to investigate/follow-up
…that potentially reduce costs, provide more physics output… 

3

FIG. 1 Schematic relationships between the topics discussed in this Colloquium. The diagram emphasizes the close connections
between theory, computations (both computational science and data science as well as many elements from computer science)
and experiments.

and the synthesis of the elements in the Cosmos, see
Fig. 1. Experiments produce data volumes that range in
complexity and heterogeneity, thereby posing enormous
challenges to their design, their execution, and the sta-
tistical data analysis.

Theoretical modeling of nuclear properties is, in most
physical cases of interest, limited by the large amount of
degrees of freedom in quantum-mechanical calculations.
The analysis of experimental data and the theoretical
modeling of nuclear systems aims, as is the case in all
fields of physics, at uncovering the basic laws of motion
in order to make predictions and estimations, as well as
finding correlations and causations for strongly interact-
ing matter. The broad aims of nuclear physics as a field
correspond to a highly distributed scientific enterprise.
Experimental e↵orts utilize many laboratories worldwide,
each with unique operation, data acquisition, and anal-
ysis methods. Similarly, the scales of focus spanned in
theoretical nuclear physics lead to broad needs for algo-
rithmic methods and uncertainty quantification. These
e↵orts, utilizing arrays of data types across size and en-
ergy scales, create an ideal environment for applications
of ML methods.

II. MACHINE LEARNING FOR NUCLEAR PHYSICS IN
BROAD STROKES

Statistics, data science, and ML form important fields
of research in modern science. They describe how to
learn and make predictions from data, and enable the

extraction of key information about physical processes
and the underlying scientific laws based on large datasets.
As such, recent advances in ML capabilities are being
applied to advance scientific discoveries in the physical
sciences (Carleo et al., 2019; Deiana et al., 2021).

Ideally, ML represents the science of building models
to perform a task without the instructions being explic-
itly programmed. This approach introduces in practice
a hierarchy of mathematical operations that enable the
computer to learn complicated concepts by building them
out of simpler ones. In terms of a graphical representa-
tion, this can be visualized as a deep network of training
and learning operations, often just referred to as deep
learning (Goodfellow et al., 2016).

There exist many ML approaches; they are often split
into two main categories, supervised and unsupervised.
In supervised learning, training data are labeled and one
lets a specific ML algorithm learn and deduce patterns
in the datasets.

This allows one to make predictions about future
events and/or data not included in the training set. On
the other hand, unsupervised learning is a method for
finding patterns and relationship in datasets without any
prior knowledge of the system. Many researchers also op-
erate with a third category, dubbed reinforcement learn-
ing. This is a paradigm of learning inspired by behav-
ioral psychology, where actions are learned to maximize
reward. One may encounter reinforcement learning being
accompanied by supervised deep learning methods such
as deep ANN. Furthermore, what is often referred to as

• Evaluate applications of ML/AI, e.g. 
smart experiment control and (online) 
event processing, smart simulations.


• Deployment/benchmarking of 
algorithms on accelerator cards, 
ARM, FPGA, QC (long term), …


• Developments in ESCAPE, 
PUNCH4NFDI, i.e. domain-specific 
initiatives.
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Figure 8: The required amount of storage as a function of year with FS+ starting in 2028
and MSVc in 2032. The top panel depicts the requested disk space for fast access, whereas
the bottom panel presents the needed long-term storage space (archive). The contributions
of the various research lines are indicated by di↵erent colors. The dashed line shows the
used storage on the Lustre filesystem for FAIR Phase Zero activities. Copies of the raw
data at other FAIR facilities are not included, but required by law.

3.11.2 Storage requirements

The time evolution of the required disk storage and archive is shown in Fig. 8. It includes
the FS+ and MSVc scenarios with tentative starts in 2028 and 2032, respectively. For
FS+ (MSVc) the total available storage saturates to about 160 (210) PB accounting for
the requested number of years the data needs to be directly accessible. The largest storage
usage is by the CBM collaboration, followed by NUSTAR, and with the start of MSVc
by PANDA. All other research lines only contribute marginally to the required storage
capacity. Also here, we do not include non-FAIR related activities, such as ALICE.
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3.11 Overview requirements

3.11.1 Compute requirements

“Offline” “Online”

FS+

MSVc

Figure 7: Overview of the required compute resources for the FS+ (top panels) and MSV
(bottom panels) scenarios. The left panels depict the resources for classes IIa (shared
“o✏ine”) and the right panels those for classes IIb (shared “online”). The title of each
panel indicates the total integrated amount of compute resources in units of MHEPSpec06
and the color codes with percentages correspond to the contributions of the various FAIR
research lines.

Figure 7 summarizes the compute requirements for class II type resources, e.g. commonly
shared computing, of the various FAIR research lines and for the di↵erent running scenar-
ios being considered (FS+ and MSVc). Other non-FAIR activities, such as ALICE, are
excluded. We note that the experiment-supporting theory contribution has been included
and redistributed among the respective FAIR research lines according to the fraction as
observed during FAIR Phase Zero. For FS+, the compute resources during “online” op-
erations (data taking, type IIb) are dominated by the requirements of CBM with only 8%
contribution from other research lines, particularly NUSTAR. The online compute capac-
ity will reach a value of about 1.1 MHEPSpec06. For “o✏ine” computations, type IIa, the
computing resources need to reach a capacity of about 2.2 MHEPSpec06 and it includes
contributions from all the FAIR research lines. For MSVc, both “online” and “o✏ine”
capacities increase by a factor of two with respect to FS+. In this case, the three CBM,
NUSTAR, and PANDA pillars ask for a significant fraction of computing resources both
for “online” and “o✏ine” operations.
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1 physical core (Intel E5-2680v4@2.4GHz) ~22 HSP06
Reference: FAIR Phase Zero ~0.5 MSP06

Compute
2.2 MHSP06

4.0 MHSP06 1.9 MHSP06

1.1 MHSP06


