Nuclear structure studies using beyond-mean-field approaches

Tomás R. Rodríguez

NUSTAR Annual Meeting - 2024
GSI-Darmstadt
February 29th, 2024

Acknowledgments

With the work of...

Benjamin Bally (CEA-Saclay)
Jaime Martínez-Larraz (UAM)
Adrián Sánchez-Fernandez (U. York)
Vimal Vijayan (GSI)
J. Luis Egido / Marta Borrajo (UAM)
Kamila Sieja (Strasbourg)

1. Introduction
2. Projected Generator Coordinate Method
3. Multiple shape-coexistence in 80 Zr
4. Variational methods in valence spaces
5. Summary
6. Introduction
7. Projected Generator Coordinate Method
8. Multiple shape-coexistence in 80 Zr
9. Variational methods in valence spaces
10. Summary

Nuclear many-body problem(s)

The nuclear many-body problem is...

Nuclear many-body problem(s)

The nuclear many-body problem is... a huge problem!

The nuclear many-body problem is... a huge problem!

Product details

- Publisher : Springer; 1980th edition (March 25, 2004)
- Landuage : Fnglish
- Hardcover : 716 pages
- ISEN-10 : 3540098208
- ISRN-13 - 078-2540098201

Item Weight : 2.66 pounds

The nuclear many-body problem is... a huge problem!

Product details

- Publisher : Springer; 1980th edition (March 25, 2004)
- Landuage : Fnglish
- Hardcover : 716 pages
- ISEN-10 : 3540098208
- ISRN-13 • 978-25400080201
- Item Weight : 2.66 pounds

The nuclear many-body problem is... a huge problem!

Product details

- Publisher : Springer; 1980th edition (March 25, 2004)
- Landuage : Fnglish
- Hardcover : 716 pages
- ISEN-TU : 3540098208
- ISRN-12 • 978-2540098201
- Item Weight : 2.66 pounds

The nuclear many-body problem is... a huge problem!

- The nuclear interaction is problematic

Product details

- Publisher : Springer; 1980th edition (March 25, 2004)
- Landuage : Fnglish
- Hardcover : 716 pages
- ISEN-10 : 3540098208
- ISRN-12 • 978-2540098201
- Item Weight : 2.66 pounds

Nuclear many-body problem(s)

Amazing progress in ab initio methods in recent years

Data taken from:
M. Wang et al., Chin. Phys. C 45, 030003 (2021)
S. Goriely et al., EPJA 52, 202 (2016)
H. Hergert (private communications)

Nuclear many-body problem(s)

Amazing progress in ab initio methods in recent years

- Nuclear interactions based on xEFT (QCD-inspired) fitted (supposedly) to NN+NNN data.
- Systematically improvable.
- Systematic error assessment.

Nuclear many-body problem(s)

1. Introduction 2. Projected Generator Coordinate Method
2. Multiple shape-coexistence in 80 Zr
3. Variational methods in valence spaces

Amazing progress in ab initio methods in recent years

- Nuclear interactions based on xEFT (QCD-inspired) fitted (supposedly) to NN+NNN data.
- Systematically improvable.
- Systematic error assessment.

XEFT

Nuclear many-body problem(s)

1. Introduction 2. Projected Generator Coordinate Method
2. Multiple shape-coexistence in 80 Zr

Amazing progress in ab initio methods in recent years

- Nuclear interactions based on xEFT (QCD-inspired) fitted (supposedly) to NN+NNN data.
- Systematically improvable.
- Systematic error assessment.

Nuclear many-body problem(s)

1. Introduction 2. Projected Generator Coordinate Method
2. Multiple shape-coexistence in 80 Zr

Amazing progress in ab initio methods in recent years

- Nuclear interactions based on xEFT (QCD-inspired) fitted (supposedly) to NN+NNN data.
- Systematically improvable.
- Systematic error assessment.

Nuclear many-body problem(s)

Amazing progress in ab initio methods in recent years

- Nuclear interactions based on xEFT (QCD-inspired) fitted (supposedly) to NN+NNN data.
- Systematically improvable.
- Systematic error assessment.

Nuclear many-body problem(s)

Amazing progress in ab initio methods in recent years

- Nuclear interactions based on XEFT (QCD-inspired) fitted (supposedly) to NN+NNN data.
- Systematically improvable.
- Systematic error assessment.

- Still large uncertainties.
- Plethora of nuclear interactions (including phenomenological adjustments).
- Similar or more limitations than the many-body methods that use phenomenological interactions.

Nuclear many-body problem(s)

1. Introduction 2. Projected Generator Coordinate Method
2. Multiple shape-coexistence in 80 Zr
3. Variational methods in valence spaces

Nuclear theory with phenomenological interactions is still in good shape

- Single-particle energies and interaction matrix elements with phenomenological adjustments.
- Parameters of the interaction fitted to experimental data.
- (Systematically) improvable.
- Large range of applicability and a wide catalog of observables and pseudo-observables.

Nuclear many-body problem(s)

Nuclear theory with phenomenological interactions is still in good shape

- Single-particle energies and interaction matrix elements with phenomenological adjustments.
- Parameters of the interaction fitted to experimental data.
- (Systematically) improvable.
- Large range of applicability and a wide catalog of observables and pseudo-observables.

```
*)
v(1, 2) = v
```



```
v
```


phenomenological interactions

Nuclear many-body problem(s)

Nuclear theory with phenomenological interactions is still in good shape

- Single-particle energies and interaction matrix elements with phenomenological adjustments.
- Parameters of the interaction fitted to experimental data.
- (Systematically) improvable.
- Large range of applicability and a wide catalog of observables and pseudo-observables.

Nuclear many-body problem(s)

Nuclear theory with phenomenological interactions is still in good shape

- Single-particle energies and interaction matrix elements with phenomenological adjustments.
- Parameters of the interaction fitted to experimental data.
- (Systematically) improvable.
- Large range of applicability and a wide catalog of observables and pseudo-observables.

Nuclear many-body problem(s)

1. Introduction 2. Projected Generator Coordinate Method \quad 3. Multiple shape-coexistence in $80 \mathrm{Zr} \quad$ 4. Variational methods in valence spaces 5 . Summary

Let us assume that we know the nuclear interaction. Exact nuclear wave functions and energies cannot be obtained in general because of:
a) the exploding dimensionality of the many-body Hilbert space
b) the huge amount of two-, three- (eventually, N-) body matrix elements that are impossible to store

$$
\begin{gathered}
\hat{H}\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle \\
\text { ?? } \\
\text { ? }
\end{gathered}
$$

Nuclear many-body problem(s)

Let us assume that we know the nuclear interaction. Exact nuclear wave functions and energies cannot be obtained in general because of:
a) the exploding dimensionality of the many-body Hilbert space
b) the huge amount of two-, three- (eventually, N-) body matrix

$$
\begin{gathered}
\hat{H}\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle \\
? ?
\end{gathered}
$$ elements that are impossible to store

Most widely used solutions to attack these problems:

- Valence-space (Shell Model) calculations with phenomenological (or normal-ordered, SRG evolved) two-body Hamiltonians
- Approximate methods (variational) with phenomenological interactions (or energy density functionals)

Nuclear many-body problem(s)

\author{

1. Introduction 2. Projected Generator Coordinate Method
 3. Multiple shape-coexistence in 80 Zr
}

Let us assume that we know the nuclear interaction. Exact nuclear wave functions and energies cannot be obtained in general because of:
a) the exploding dimensionality of the many-body Hilbert space
b) the huge amount of two-, three- (eventually, N-) body matrix
elements that are impossible to store

Most widely used solutions to attack these problems:

- Valence-space (Shell Model) calculations with phenomenological (or normal-ordered, SRG evolved) two-body Hamiltonians
- Approximate methods (variational) with phenomenological interactions (or energy density functionals)

1. Introduction

2. Projected Generator Coordinate Method
3. Multiple shape-coexistence in 80 Zr
4. Variational methods in valence spaces
5. Summary

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\begin{aligned}
& \left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle=\sum_{q K} f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle
\end{aligned}
$$

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\begin{aligned}
& \left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle=\sum_{q K} f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle, ~
\end{aligned}
$$

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\begin{aligned}
& \left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle=\sum_{q K} f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle \\
& \quad \text { linear combination }
\end{aligned}
$$

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\begin{aligned}
& \left|\Psi \Psi_{\sigma}^{J M N Z \pi}\right\rangle=\sum_{q K} f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle \\
& \Gamma \equiv(J M N Z \pi) \\
& \quad \text { linear combination } \begin{array}{c}
\text { coefficients of the } \\
\text { linear combination }
\end{array}
\end{aligned}
$$

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\begin{aligned}
& \left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle=\sum_{q K} f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle \\
& \quad \text { linear combination } \begin{array}{l}
\text { coefficients of the } \\
\text { linear combination }
\end{array} \\
& \text { "basis" states }
\end{aligned}
$$

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\begin{aligned}
& \left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle=\sum_{q K} f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle
\end{aligned}
$$

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle=\sum_{\Gamma \equiv(J M N Z \pi)} \sum_{q K} f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle
$$

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\begin{aligned}
& \left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle=\sum_{q K} f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle \\
& \text { "basis" states }
\end{aligned}
$$

Intrinsic (HFB-like, Bogoliubov quasiparticle vacuum) state:

$$
|\Phi(q)\rangle \rightarrow \beta_{b}(q)|\Phi(q)\rangle=0 \quad \forall b \quad \beta_{b}^{\dagger}(q)=\sum_{a} U_{a b}(q) c_{a}^{\dagger}+V_{a b}(q) c_{a}
$$

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\begin{aligned}
& \left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle \\
& \Gamma \equiv(J M N Z \pi)
\end{aligned}=\sum_{q K} f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle
$$

"basis" states
Intrinsic (HFB-like, Bogoliubov quasiparticle vacuum) state:

$$
|\Phi(q)\rangle \rightarrow \beta_{b}(q)|\Phi(q)\rangle=0 \quad \forall b
$$

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle=\sum_{q K} f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle
$$

"basis" states
Intrinsic (HFB-like, Bogoliubov quasiparticle vacuum) state:

$$
|\Phi(q)\rangle \rightarrow \beta_{b}(q)|\Phi(q)\rangle=0 \forall b \quad \beta_{b}^{\dagger}(q)=\sum_{a} U_{a b}(q) \xi_{a}^{\dagger}+V_{a b}(q) \dot{v}_{a}
$$

We minimize the particle number projected energy functional

$$
E_{\mathrm{PNVAP}}^{\prime}[|\Phi(q)\rangle]=\frac{\langle\Phi(q)| \hat{H} P^{N} P^{Z}|\Phi(q)\rangle}{\langle\Phi(q)| P^{N} P^{Z}|\Phi(q)\rangle}-\langle\Phi(q)| \lambda_{q} \hat{Q}|\Phi(q)\rangle
$$

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle=\sum_{q K} f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle
$$

"basis" states
Intrinsic (HFB-like, Bogoliubov quasiparticle vacuum) state:

$$
|\Phi(q)\rangle \rightarrow \beta_{b}(q)|\Phi(q)\rangle=0 \quad \forall b \quad \beta_{b}^{\dagger}(q)=\sum_{a} U_{a b}(q) \dot{v}_{a}^{\dagger}+V_{a b}(q) \dot{v}_{a}
$$

We minimize the particle number projected energy functional

$$
E_{\mathrm{PNVAP}}^{\prime}[|\Phi(q)\rangle]=\frac{\langle\Phi(q)| \hat{H} P^{N} P^{Z}|\Phi(q)\rangle}{\langle\Phi(q)| P^{N} P^{Z}|\Phi(q)\rangle}-\langle\Phi(q)| \lambda_{q} \hat{Q}|\Phi(q)\rangle
$$

M. Anguiano, J. L. Egido, and L. M. Robledo, Nucl. Phys. A 696, 467 (2001).

Constraints $q \longrightarrow$ quadrupole deformations; octupole deformations; pairing content; intrinsic rotations

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle=\sum_{q K} f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle
$$

"basis" states
Intrinsic (HFB-like, Bogoliubov quasiparticle vacuum) state:

$$
|\Phi(q)\rangle \rightarrow \beta_{b}(q)|\Phi(q)\rangle=0 \quad \forall b \quad \beta_{b}^{\dagger}(q)=\sum_{a} U_{a b}(q) \xi_{a}^{\dagger}+V_{a b}(q) \xi_{a}
$$

We minimize the particle number projected energy functional

$$
E_{\text {PNVAP }}^{\prime}[|\Phi(q)\rangle]=\frac{\langle\Phi(q)| \hat{H} P^{N} P^{Z}|\Phi(q)\rangle}{\langle\Phi(q)| P^{N} P^{Z}|\Phi(q)\rangle}-\langle\Phi(q)| \lambda_{q} \hat{Q}|\Phi(q)\rangle
$$

Constraints $\quad q \rightarrow$ quadrupole deformations; octupole deformations; pairing content; intrinsic rotations

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\begin{aligned}
& \left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle \\
& \Gamma \equiv(J M N Z \pi)
\end{aligned}=\sum_{q K} f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle
$$

Intrinsic (HFB-like, Bogoliubov quasiparticle vacuum) state:

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\begin{aligned}
& \left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle=\sum_{q K} f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle \\
& \text { "basis" states }
\end{aligned}
$$

Intrinsic (HFB-like, Bogoliubov quasiparticle vacuum) state:

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\begin{gathered}
\left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle \\
\Gamma \equiv(J M N Z \pi)
\end{gathered}=\sum_{q K} f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle
$$

Intrinsic (HFB-like, Bogoliubov quasiparticle vacuum) state:

- First classification of the collective quadrupole behavior of the nucleus based on the total energy surfaces (TESs)
- Final theoretical interpretation of the spectrum is given by the analysis of the excitation energies, electromagnetic properties and the collective wave functions

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\begin{aligned}
& \left.\left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle=\sum_{\Gamma \equiv(J M N Z \pi)} f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi} \Phi(q)\right\rangle \\
& \text { "basis" states }
\end{aligned}
$$

Symmetry restoration
$P_{M K}^{J} \rightarrow$ angular momentum projector
$P^{N} \rightarrow$ neutron number projector
$P^{Z} \rightarrow$ proton number projector
$P^{\pi} \rightarrow$ spatial parity projector

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle=\sum_{\Gamma \equiv(J M N Z \pi)} \sum_{\substack { q K \\
\begin{subarray}{c}{\text { coefficients of the } \\
\text { linear combination }{ q K \\
\begin{subarray} { c } { \text { coefficients of the } \\
\text { linear combination } } }\end{subarray}}^{f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle}
$$

The coefficients are obtained by minimizing the expectation value of the Hamiltonian (energy) with those coefficients as the variational parameters:

$$
\sum_{q^{\prime} K^{\prime}}\left(\mathcal{H}_{q K, q^{\prime} K^{\prime}}^{\Gamma}-E_{\sigma}^{\Gamma} \mathcal{N}_{q K, q^{\prime} K^{\prime}}^{\Gamma}\right) f_{\sigma ; q^{\prime} K^{\prime}}^{\Gamma}=0
$$

$\mathcal{N}_{q K ; q^{\prime} K^{\prime}}^{\Gamma}=\langle\Phi(q)| P_{K K^{\prime}}^{J} P^{N} P^{Z} P^{\pi}\left|\Phi\left(q^{\prime}\right)\right\rangle$
Hamiltonian and norm kernels

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle=\sum_{\Gamma \equiv(J M N Z \pi)} \sum_{\substack { q K \\
\begin{subarray}{c}{\text { coefficients of the } \\
\text { linear combination }{ q K \\
\begin{subarray} { c } { \text { coefficients of the } \\
\text { linear combination } } }\end{subarray}}^{f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle}
$$

The coefficients are obtained by minimizing the expectation value of the Hamiltonian (energy) with those coefficients as the variational parameters:

$$
\sum_{q^{\prime} K^{\prime}}\left(\mathcal{H}_{q K, q^{\prime} K^{\prime}}^{\Gamma}-E_{\sigma}^{\Gamma} \mathcal{N}_{q K, q^{\prime} K^{\prime}}^{\Gamma}\right) f_{\sigma ; q^{\prime} K^{\prime}}^{\Gamma}=0 \quad \begin{gathered}
\text { Hill-Wheeler- } \\
\text { Griffin (HWG) } \\
\text { equation }
\end{gathered}
$$

$\mathcal{N}_{q K ; q^{\prime} K^{\prime}}^{\Gamma}=\langle\Phi(q)| P_{K K^{\prime}}^{J} P^{N} P^{Z} P^{\pi}\left|\Phi\left(q^{\prime}\right)\right\rangle$

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle=\sum_{\Gamma \equiv(J M N Z \pi)} \sum_{\substack { q K \\
\begin{subarray}{c}{\text { coefficients of the } \\
\text { linear combination }{ q K \\
\begin{subarray} { c } { \text { coefficients of the } \\
\text { linear combination } } }\end{subarray}}^{f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle}
$$

The coefficients are obtained by minimizing the expectation value of the Hamiltonian (energy) with those coefficients as the variational parameters:

$$
\sum_{q^{\prime} K^{\prime}}\left(\mathcal{H}_{q K, q^{\prime} K^{\prime}}^{\Gamma}-E_{\sigma}^{\Gamma} \mathcal{N}_{q K, q^{\prime} K^{\prime}}^{\Gamma}\right) f_{\sigma ; q^{\prime} K^{\prime}}^{\Gamma}=0 \quad \begin{gathered}
\begin{array}{c}
\text { Gill-Wheeler- } \\
\text { Grifin (HWG) } \\
\text { equation }
\end{array}
\end{gathered}
$$

$\mathcal{N}_{q K ; q^{\prime} K^{\prime}}^{\Gamma}=\langle\Phi(q)| P_{K K^{\prime}}^{J} P^{N} P^{Z} P^{\pi}\left|\Phi\left(q^{\prime}\right)\right\rangle$

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle=\sum_{\Gamma \equiv(J M N Z \pi)} \sum_{\substack { q K \\
\begin{subarray}{c}{\text { coefficients of the } \\
\text { linear combination }{ q K \\
\begin{subarray} { c } { \text { coefficients of the } \\
\text { linear combination } } }\end{subarray}}^{f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle}
$$

The coefficients are obtained by minimizing the expectation value of the Hamiltonian (energy) with those coefficients as the variational parameters:

$$
\sum_{q^{\prime} K^{\prime}}\left(\mathcal{H}_{q K, q^{\prime} K^{\prime}}^{\Gamma}-E_{\sigma}^{\Gamma} \mathcal{N}_{q K, q^{\prime} K^{\prime}}^{\Gamma}\right) f_{\sigma ; q^{\prime} K^{\prime}}^{\Gamma}=0 \quad \begin{gathered}
\begin{array}{c}
\text { Gill-Wheeler- } \\
\text { Grifin (HWG) } \\
\text { equation }
\end{array}
\end{gathered}
$$

$\mathcal{H}_{q K, q^{\prime} K^{\prime}}^{\Gamma}=\langle\Phi(q)| \hat{H} P_{K K^{\prime}}^{J} P^{N} P^{Z} P^{\pi}\left|\Phi\left(q^{\prime}\right)\right\rangle$,
$\mathcal{N}_{q K ; q^{\prime} K^{\prime}}^{\Gamma}=\langle\Phi(q)| P_{K K^{\prime}}^{J} P^{N} P^{Z} P^{\pi}\left|\Phi\left(q^{\prime}\right)\right\rangle$

movie reality

Theoretical framework

Nuclear wave functions: Generator Coordinate Method (GCM) ansatz

$$
\begin{aligned}
& \left|\Psi_{\sigma}^{J M N Z \pi}\right\rangle=\sum_{q K} f_{\sigma ; q K}^{J M N Z \pi} P_{M K}^{J} P^{N} P^{Z} P^{\pi}|\Phi(q)\rangle \\
& \Gamma \equiv(J M N Z \pi)
\end{aligned}
$$

$$
\sum_{q^{\prime} K^{\prime}}\left(\mathcal{H}_{q K, q^{\prime} K^{\prime}}^{\Gamma}-E_{\sigma}^{\Gamma} \mathcal{N}_{q K, q^{\prime} K^{\prime}}^{\Gamma}\right) f_{\sigma ; q^{\prime} K^{\prime}}^{\Gamma}=0
$$

M. Siciliano et al., Physical Review C 104, 034320 (2021)

1. Introduction
2. Projected Generator Coordinate Method
3. Multiple shape-coexistence in 80 Zr
4. Variational methods in valence spaces
5. Summary

Multiple Shape Coexistence

gina

$80 Z_{40}$

$$
\left.\delta E^{N, Z}[\bar{\Phi}(\beta, \gamma)]\right|_{\bar{\Phi}=\Phi}=0 \quad E^{N, Z}[\Phi]=\frac{\langle\Phi| \hat{H}_{2 \mathrm{~b}} \hat{P}^{N} \hat{P}^{Z}|\Phi\rangle}{\langle\Phi| \hat{P}^{N} \hat{P}^{Z}|\Phi\rangle}+\varepsilon_{D D}^{N, Z}(\Phi)-\lambda_{q_{20}}\langle\Phi| \hat{Q}_{20}|\Phi\rangle-\lambda_{q_{22}}\langle\Phi| \hat{Q}_{22}|\Phi\rangle
$$

- Up to five minima in the potential energy surface.
- Absolute minimum corresponds to spherical configuration ($N=40$ spherical gap)
- Other minima related to the filling in and emptying of g9/2, $p_{1 / 2}, f_{5 / 2}$ and $d_{5 / 2}$ orbits.

Multiple Shape Coexistence

$$
|I M K ; N Z ; \beta \gamma\rangle=\frac{2 I+1}{8 \pi^{2}} \int \mathcal{D}_{M K}^{I *}(\Omega) \hat{R}(\Omega) \hat{P}^{N} \hat{P}^{Z}|\Phi(\beta, \gamma)\rangle d \Omega \quad|I M ; N Z ; \beta \gamma\rangle=\sum_{K} g_{K}^{I M ; N Z ; \beta \gamma}|I M K ; N Z ; \beta \gamma\rangle
$$

- Five minima are closer in energy whenever the rotational invariance is restored.
- Absolute minima corresponds to deformed configuration $\beta_{2} \sim 0.55$
- Barriers between the minima are less than 1 MeV . Mixing?

Multiple Shape Coexistence

$80 \mathrm{Zr}_{40}$

Relevance of angular momentum projection
(Similar feature as in 32 Mg , see R. Rodriguez-Guzmán et al., Nucl. Phys. A 709, 201 (2002))

Multiple Shape Coexistence

gfin
UNIVERSIDAD
OMPLUTEN

$80 \mathrm{Zr}_{40}$

Multiple Shape Coexistence

gfin....
UNIVERSIDA
OMPLUTENS

$80 \mathrm{Zr}_{40}$

Multiple Shape Coexistence

gfinu.
UNIVERSIDAD
OMPLUTENS

$80 \mathrm{Zr}_{40}$

1. Introduction
2. Projected Generator Coordinate Method
3. Multiple shape-coexistence in 80 Zr

4. Variational methods in valence spaces

5. Summary

Variational methods in valence spaces

gfinuan

- Extend the range of applicability of shell model calculations
- Provide an interpretation of the SM states in terms of intrinsic collective shapes

Variational methods in valence spaces

- Extend the range of applicability of shell model calculations
- Provide an interpretation of the SM states in terms of intrinsic collective shapes

shapes / collective motion

shell structure / particle-hole excitations

Variational methods in valence spaces

gfinuan

- Extend the range of applicability of shell model calculations
- Provide an interpretation of the SM states in terms of intrinsic collective shapes

Variational methods in valence spaces

- Extend the range of applicability of shell model calculations
- Provide an interpretation of the SM states in terms of intrinsic collective shapes

Y. Tsunoda et al., PRC 89, 031301(R) (2014), Y. Utsuno et al., PRL 114, 032501 (2015), ..

Variational methods in valence spaces

- Extend the range of applicability of shell model calculations
- Provide an interpretation of the SM states in terms of intrinsic collective shapes

Y. Tsunoda et al., PRC 89, 031301(R) (2014), Y. Utsuno et al., PRL 114, 032501 (2015), .

Projected Generator Coordinate Method
PGCM

C. F. Jiao et al, PRC 96, 054310, B. Bally et al., PRC 100, 044308 (2019), PRC 104, 054306 (2021), ..

Variational methods in valence spaces

- Extend the range of applicability of shell model calculations
- Provide an interpretation of the SM states in terms of intrinsic collective shapes

Y. Tsunoda et al., PRC 89, 031301(R) (2014), Y. Utsuno et al., PRL 114, 032501 (2015),

Projected Generator Coordinate Method
PGCM

$0_{0}^{0.05} \beta_{2}{ }^{0.1} \quad 0$

C. F. Jiao et al, PRC 96, 054310, B. Bally et al., PRC 100, 044308 (2019), PRC 104, 054306 (2021), .

Discrete Non-orthogonal Shell Model DNO-SM

B. Bounthong, D. D. Dao and F. Nowacki, PRL 117, 272501 (2016), PRC 105054314 (2022, ..

Variational methods in valence spaces

- Extend the range of applicability of shell model calculations
- Provide an interpretation of the SM states in terms of intrinsic collective shapes

Y. Tsunoda et al., PRC 89, 031301(R) (2014), Y. Utsuno et al., PRL 114, 032501 (2015), .

C. F. Jiao et al, PRC 96, 054310, B. Bally et al., PRC 100, 044308 (2019), PRC 104, 054306 (2021), .

Discrete Non-orthogonal Shell Model DNO-SM

B. Bounthong, D. D. Dao and F. Nowacki, PRL 117, 272501 (2016), PRC 105054314 (2022, ..
other approaches: VAMPIR, PSM, ...

Projected Generator Coordinate Method (EDF)

- Kind of nuclei

- even-even nuclei
- Multi-quasiparticle excitations are included
- even-odd/odd-even nuclei (blocking mandatory)
- odd-odd nuclei (blocking mandatory)
- Observables and physical quantities
- Bulk properties: masses, radii, nuclear densities.
- Excitation energies
- electromagnetic transition probabilities
- Beta-decay rates
- Double-beta decay matrix elements
- Electromagnetic responses
- Fission properties
- Reaction properties

Projected Generator Coordinate Method (Hamil)

- Kind of nuclei

- even-even nuclei
- Multi-quasiparticle excitations are included
- even-odd/odd-even nuclei (blocking mandatory)
- odd-odd nuclei (blocking mandatory)
- Observables and physical quantities
- Bulk properties: masses, radii, nuclear densities.
- Excitation energies
- electromagnetic transition probabilities
- Beta-decay rates
- Double-beta decay matrix elements
- Electromagnetic responses
- Fission properties
- Reaction properties

TAURUS

Theory for A Unified descRiption of nUclear Structure
B. Bally, T.R.R.

Shape coexistence in ${ }^{66 S e}$

(a) SCCM-JUN45

Shape coexistence in ${ }^{66}$ Se:
We can interpret the exact SM results in terms of collective coordinates (deformations)

Shape coexistence in ${ }^{665 e}$

gfinu....

Beta-decay properties

Benchmark of the PGCM method against exact results.

*B. H. Wildenthal, M. S. Curtis, B. A. Brown, PRC 28, 1343 (1983)

$B(M 1)$ strength functions in e-e nuclei

Exploring cranking, pn-pairing (isoscalar and isovector)

- exact ground state energy
- exact description of low-lying excited energies

- Excellent description of the lowest excited $1+$ states

$B(M 1)$ strength functions in e-e nuclei

Exploring cranking, pn-pairing (isoscalar and isovector)

of the lowest
S. Bofos, J. Martínez-Larraz et al., in preparation

1. Introduction

2. Projected Generator Coordinate Method
3. Multiple shape-coexistence in 80 Zr
4. Variational methods in valence spaces
5. Summary

- PGCM methods provide a reliable description of nuclear structure observables.
- It is a very flexible method to approach exact solutions although the present implementation tends to favor correlations in the ground state (stretched spectra).
- Shape coexistence can be visible in the TES (several minima) and/or in the GCM calculation (bands with different collective wave functions).
- Multiple shape coexistence is predicted for $80 Z$ r.
- ISM states can be studied in terms of intrinsic shapes in the valence space.
- PGCM is able to compute beta-decay transition probabilities and $\mathrm{B}(\mathrm{M} 1)$ strength functions

Thank you!

