

Laser and mass spectroscopy of exotic silver isotopes around *N*=50 shell-closure

Mikael Reponen

NUSTAR Week - 13.10.2023

IFIN-HH / ELI-NP Bucharest - Magurele

Region of interest: The immediate area below tin-100

Sn

- Silver the first chain studied in this work
 - Pd, Sn most likely next cases _
 - In and Cd to follow.
- Moments, radii and masses
- Evolution of the single particle and collective properties n across N=50

and at N=Z.

Rh

N=Z

¹⁰⁶Cd ¹⁰⁸Cd ³⁵Cd ⁹⁶Cd ⁹⁹Cd ¹⁰⁰Cd ¹⁰¹Cd ¹⁰²Cd ¹⁰³Cd ¹⁰⁴Cd ¹⁰⁵Cd ⁰⁷Cd Cd ⁸Cd ⁹⁶Aq ¹⁰⁰Aq ¹⁰²Aq ¹⁰³Ag ¹⁰⁴Ag ^{IO5}Ag ⁹³Ag ⁹⁷Ag ⁹⁸Aq ⁹⁹Aq ¹⁰¹Ag ^{oe}Ag ¹⁰²Pd ⁹⁵Pd ⁹⁶Pd ■ ⁹⁷Pd ⁹⁸Pd ⁹⁹Pd ¹⁰⁰Pd ¹⁰¹Pd ⁰⁶Pd Pd Pd

Te

Sb

^{IJI}Sn

N=50

¹⁰⁸Sn

¹⁰⁶Sn

Region of interest: The immediate area below tin-100

• High-spin isomer (21+) in ⁹⁴Ag , T1/2 = 0.4 s :

- β decay (highest spin), β-delayed proton emission, 1-proton decay
- 2-proton decay (Mukha et al., Nature (2006))
- Schmidt *et al.*, Z. Phys A (1994), Commara et al., NPA (2002) , Mukha *et al.*, PRC (2004), PRL (2005), Nature (2006), Plettner et al., NPA (2004)

The conundrum:

- Non-observation of states in ⁹²Rh Pechenya et al., PRC (2007)
- Contradiction from masses
 A. Kankainen et al., Phys. Rev. Lett. 101 (2008) 142503
- No observation of 2-proton decay Cerny et al., PRL (2009)
- Large-scale SM calculations do not accept large deformation picture Kaneko et al., PRC (2008)

Inductively Heated Hot Cavity Cather Laser Ion Source

- Implantation of reaction products to as solid material
- The high temperature => fast diffusion to cavity volume

Transfer tube

- Effusing atoms selectively ionized with lasers
- Based on catcher ion source systems by R. Kirchner

R. Kirchner et al. Ion sources for the GSI on-line separator NIM 186, 1-2, (1981)

¹⁰¹Sn: Z Janas et al 1995 Phys. Scr. 262 (1995) ¹⁰⁰In: W. Kurcewicz, Z. Phys. A - Atoms and Nuclei 308, 21-31 (1982) ⁹⁷Cd: K. Schmidt, Nuclear Physics A 624 185-209 (1997) ⁹⁴Ag: I. Mukha, Nature volume 439, 298–302 (2006) ⁹³Pd: K. Schmidt, Eur. Phys. J. A 8, 303–306 (2000)

 λ_2

Ionization method: Laser resonance ionization

- Each element have their unique atomic structure -"fingerprint".
- Multiple laser beams overlapped with atoms to stepwise excite and ionize
 - Efficient! As high as >50%, typically a few %
- A great method for sensitive laser spectroscopy
 - Resolution highly environment dependent.

We chose resonance ionization to gain a huge improvement in selectivity!

Inductively Heated Hot Cavity Cather Laser Ion Source ver 6.

- A target ion source system for fusionevaporation products
 - Efficient: 1 % for Ag and Pd
 - Fast: <20 ms for Ag, less than 90 ms for Pd

Challenging nuclear theory

The first crossing of N=50 with optical methods in the tin-100 region

- In-source laser spectroscopy in the immediate vicinity of ¹⁰⁰Sn
 - PI-ICR assisted RIS

- Dual etalon ~5 GHz linewidth.
- Virtually a background-free measurements
 - Signal rates of 1 per 5 minutes

Evidence of a sudden increase in the nuclear size of proton-rich silver-96

M. Reponen [⊡], R. P. de Groote, L. Al Ayoubi, O. Beliuskina, M. L. Bissell, P. Campbell, L. Cañete, B. Cheal, K. Chrysalidis, C. Delafosse, A. de Roubin, C. S. Devlin, T. Eronen, R. F. Garcia Ruiz, S. Geldhof, W. Gins, M. Hukkanen, P. Imgram, A. Kankainen, M. Kortelainen, Á. Koszorús, S. Kujanpää, R. Mathieson, D. A. Nesterenko, I. Pohjalainen, M. Vilén, A. Zadvornaya & I. D. Moore Show fewer authors

Nature Communications 12, Article number: 4596 (2021) Cite this article

Charge-radii of silver-96 A challenge to nuclear DFT

- Spectra for ¹⁰⁴⁻⁹⁶Ag obtained using ¹⁴N(⁹²Mo, 2pxn) Ag
- Very sharp kink observed at N=50 beyond current DFT models. More data needed to refine error bar.
 - Points towards a need for symmetry-restored multireference EDF
- Complemented by laser spectroscopy of neutron-rich silver in ISOLDE.

11

- New data for ^{97, 96,95}Ag using ⁴⁰Ca(^{58/60}Ni, pxn) Ag
- New charge radii confirms the large kink at N=50.
 - Change in ⁹⁵Ag radii follows a decreasing trend
 - Low stats => high errors •
- Theory development needed to reproduce the feature $\overline{\mathcal{L}}_{\mathcal{L}}$
 - E.g. Multi-reference EDF.

- UNEDEF calculationsfor even-N
 - Calculations by <u>Jacek Dobaczewski</u>
 - Following work done for neutron-rich nuclei (R. P. de Groote et al., submitted to Phys. Lett. B)
- Mixing of the two configurations on two sides of N=50 seems be different.

Towards the N=Z line Probing the masses of ⁹⁶⁻⁹⁴Ag

⁹⁵⁻⁹⁶Ag mass: Testing nuclear theories

ab-initio calcluation across the N=50 shell B. Hu, J. D. Holt et al.

- understanding of the nuclear structure at N=50 shell
- Benchmark nuclear models and shell model calculations

Latest results- mass spectrometry of ⁹⁴Ag

• Experiment:

- 2.2 mg/cm² ⁵⁸Ni rotating target, 205 MeV ⁴⁰Ca beam
 - ⁴⁰Ca(⁵⁸Ni,1p3n)⁹⁴Ag
- 1, 2, 3, 4 μ m Mo degrader set
- ⁹⁵Ag clearly seen with MR-ToF
 - ⁹⁵Ag measured to compare against Penning trap data.
- 7+ clearly observed at mass 94 with lasers near at expected centroid.

With the laser timing delayed

With the lasers on time

19.10.2023

16

Slide contributions: V. Virtanen

Latest results - mass spectrometry of ⁹⁴Ag

Laser wavelength set to 984.494 nm (JUN45 based estimate for 7+!)

Laser wavelength set to 984.525 nm (JUN45 based estimate for 21+!)

Whether the O+ is in the data will be known later. ⁹⁴Ag ground state band oberved at MARA (X. Pereira-López EPJA 59, 44 (2023))

Status and outlook

- Hot cavity + lasers + mass filters =>Access to N=Z line!
 - Laser spectroscopy done down to ⁹⁵Ag
 - 7+ and 21 + isomers mass excess measured in ⁹⁴Ag.
- Near future research goals with the setup
 - Laser spectroscopy of proton emitting states
 - 21+ isomer in ⁹⁴Ag
 - Access to, for example, Tm at drip-line?
 - Decay spectroscopy with pure isomeric beams?
 - Hot cavity efficiency development required.
 - Further ground state studies towards the *N*=*Z*
 - 1 % HCLIS efficiency shown for Pd!

Thank you for listening!

JYFL: L. Al Ayoubi, O. Beliuskina, L. Cañete, C. Delafosse, A. de Roubin T. Eronen, S. Geldhof, W. Gins, M. Hukkanen, A. Jaries, A. Kankainen, M. Kortelainen, S. Kujanpää, D. A. Nesterenko, I. D. Moore, S. Nikas, I. Pohjalainen, A. Raggio, J. Ruotsalainen, M. Stryjczyk, M. Vilén, V. Virtanen, A. Zadvornaya **<u>U York</u>:** J. Dobaczewski, H. Wibowo **U Manchester:** M. L. Bissell, P. Campbell **U Liverpool:** B. Cheal, C. S. Devlin, A. Koszorus, R. Mathieson TU Darmstad: P. Imgram MIT: R. F. Garcia Ruiz KU Leuven: R. P. de Groote GSI: Z. Ge Giessen: G. Kripko-Koncz **GANIL:** L. Caceres **CERN:** K. Chrysalidis

