SHMc - charm statistical hadronization

jointly with A. Andronic, P. Braun-Munzinger, K. Redlich and recently, in addition, H. Brunßen, J. Crkovska, M. Völkl

Johanna Stachel, Phys. Inst. Universität Heidelberg GSI, April 8-12 2024

Formation and Hadronization of heavy quarks

formation of ccbar: in hard initial scattering on time scale $1/2m_c$ with $m_c = 1.3 \text{ GeV} \rightarrow t_{ccbar} = 0.08 \text{ fm/c}$

- comparable or shorter than formation of a thermalized QGP

- significantly shorter than formation time of hadrons (1-several fm/c) can consider deconfined quarm quarks as impurities inside the QGP thermal production at LHC energy still negligible annihilation of charm quarks in QGP negligible

there is strong experimental evidence that charm quarks thermalize inside the QGP - supported by transport coefficients computed in lattice QCD

justifies application of statistical concept of hadronization of heavy quarks and in particular also to quarkonia

Relevant time scales

formation of ccbar: in hard initial scattering on time scale $1/2m_c$ with $m_c = 1.3 \text{ GeV} \rightarrow \tau_{ccbar} = 0.08 \text{ fm/c}$

typical hadron formation time: τhadron order 1 fm/c (Blaizot/Ollitrault 1989 Hüfner, Ivanov, Kopeliovich, and Tarasov 2000) W. Brooks, QM09: description of recent JLAB and HERMES hadron production data in color dipole model -> time scale 5 fm/c

comparable to or longer than QGP formation time: $\tau_{QGP} \approx 1$ fm/c at SPS, < 0.5 fm/c at RHIC, ≈ 0.1 fm/c at LHC

at LHC even color octet state not formed before QGP ~ (H.Satz 2006) $\tau_8=1/\sqrt{2m_c\Lambda_{\rm QCD}}\approx 0.25\,{\rm fm}$

collision time: $t_{coll} = 2R/\gamma_{cm}$ at RHIC 0.1 fm/c, at LHC < 5 10-3 fm/c

Time scales continued

ccbar pairs are formed at collision time scale $t_{coll} = \tau_{ccbar}$

collision time scale comparable to plasma formation time scale and hadron formation time scale at FAIR and SPS $t_{coll} = \tau_{ccbar} \cong \tau_{QGP} \cong \tau_{hadron}$

but at RHIC and much more pronounced at LHC there is the following hierarchy: $t_{coll} = \tau_{ccbar} \ll \tau_{QGP} \ll \tau_{hadron}$

expect that cold nuclear matter absorption effects decrease from SPS to RHIC and are totally irrelevant at LHC

Charm quark thermalization

LHC data: strong charmed hadron elliptic flow and energy loss (RAA) point to large degree of charm quark thermalization in QGP modeling in terms of heavy quark diffusion in hot and dense medium leads to spatial diffusion coefficients $1.5 < 2\pi TD < 4.5$ at T_c $\rightarrow \tau_{kin} = 2.5 - 7.6$ fm/c

Charm quark thermalization

LHC data: strong charmed hadron elliptic flow and energy loss (RAA) point to large degree of charm quark thermalization in QGP modeling in terms of heavy quark diffusion in hot and dense medium leads to spatial diffusion coefficients: $1.5 < 2\pi TD < 4.5$ at $T_c \rightarrow \tau_{kin} = 2.5 - 7.6$ fm/c

Hadronization of charm quarks

all charm quarks have to appear in charmed hadrons at hadronization of QGP also J/ ψ can form from deconfined quarks in particular, if number of cc pairs is large (colliders) - NJ/ $\psi \propto Ncc^2$

(P. Braun-Munzinger and J. Stachel, Phys. Lett. B490 (2000) 196) also applies to b-quarks and bottomonia

(A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel NPA 789 (2007) 334)

expect J/ ψ suppression at low beam energies (SPS, RHIC) and J/ ψ enhancement at high energies (LHC)

Statistical hadronization model for charm (SHMc) including canonical thermodynamics

- the charm balance equation determines the fugacity gc

$$N_{c\overline{c}} = \frac{1}{2} g_c V \sum_{h_{oc,1}^i} n_i^{th} + g_c^2 V \sum_{h_{hc}^j} n_j^{th} + \frac{1}{2} g_c^2 V \sum_{h_{oc,2}^k} n_k^{th}$$

obtained from measured open charm cross section

n_{i,j,k}th: # of thermal charm hadrons

- balance equation with canonical suppression needs to be solved numerically to obtain g_c

$$\begin{split} N_{c\bar{c}} &= \sum_{\alpha=1,2} N_{oc,\alpha} \frac{I_{\alpha}(N_c^{\text{tot}})}{I_0(N_c^{\text{tot}})} + N_{hc} \quad \text{defining:} \quad N_{oc,1} = \frac{1}{2} g_c V \sum_{\substack{h_{oc,1}^i}} n_i^{\text{th}} \\ N_{oc,2} &= \frac{1}{2} g_c^2 V \sum_{\substack{h_{oc,2}^k}} n_k^{\text{th}} \\ N_{hc} &= g_c^2 V \sum_{\substack{h_{bc}^j}} n_j^{\text{th}} \end{split}$$

Charm cross section – nuclear effects

first D⁰ measurement in central PbPb down to pt=0

 $dN/dy = 6.819 \pm 0.457 \text{ (stat.)} {}^{+0.912}_{-0.936} \text{ (syst.)} \pm 0.054 \text{ (BR)}$

assume fragmentation like in SHMc \rightarrow charm cross section

 $\frac{dN_{ccbar}}{dy} = 13.7 \pm 2.1$ corresponding to $g_c = 31.4 \pm 4.8$

use this as new basis for PbPb predictions from SHMc 8.8% larger than our estimate from pp and nuclear effects uncertainty reduced by 15%

outlook to LHC Run3/4: with upgraded ALICE detector and 50 kHz PbPb collisions \rightarrow precision measurement of all singly charmed hadrons down to pt=0

Charm hadron yields with modified charm resonance spectrum

recently a lot of speculation about possibly incomplete charm baryon spectrum to test impact, tripled statistical weights of excited charm baryons

charm cross section increases 20% yield of charm baryons nearly doubles mesons practically unaffected

Centrality dependence of charm fugacity gc at LHC energy

Reconstruction of J/ ψ in PbPb collisions at LHC

 $J/\psi \ \rightarrow \ e^+e^-$ or $\mu^+\mu^-$ with 6%

photoproduction in ultra-peripheral PbPb collisions – excellent signal to background very good understanding of line shape <u>most challenging:</u> central PbPb collisions in spite of formidable combinatorial background (true electrons, not from J/ψ decay but e.g. Dor B-mesons) resonance well visible

Systematics of hadron production in SHMc

J/ψ and statistical hadronization

production in PbPb collisions at LHC consistent with deconfinement and subsequent statistical hadronization within present uncertainties main uncertainty: open charm cross section

the multi-charm hierarchy

open and hidden charm hadrons, including exotic objects, such as X-states, c-deuteron, c-triton, pentaquark, Ω_{ccc}

emergence of a unique pattern, due to g_c^n and mass hierarchy perfect testing ground for deconfinement for LHC Runs3 and beyond

Unique prediction of SHMc – open charm/charmonium

for the first time ratio of fully p_t integrated D° to J/ ψ available from ALICE

D⁰: cubar, m = 1.9 GeV, J=0 J/ ψ : ccbar, m = 3.1 GeV, J = 1 in SHMc yield ratio governed by masses, degeneracy, strong feeding, and g_c

 \rightarrow J/ ψ relative to D⁰ falls into place naturally

Beyond yields: transverse momentum distributions

enhancement strongly rising towards lower pt for mid-rapidity even beyond pp (not even considering shadowing)

Beyond yields: transverse momentum distributions

assume thermalization of charm quarks in QGP, charm quarks follow collective flow use hydro velocity profile at pseudocritical temperature from MUSIC (3+1) D tuned to light flavor observables

$$\frac{\mathrm{d}^2 N}{p_{\mathrm{T}} \mathrm{d} p_{\mathrm{T}} \mathrm{d} y} \propto \int_0^R r \mathrm{d} r \left\{ m_{\mathrm{T}} \cosh \rho \right. \\ m_{\mathrm{T}} \cosh \rho \, K_1 \left(\frac{m_{\mathrm{T}} \cosh \rho}{T} \right) \, I_0 \left(\frac{p_{\mathrm{T}} \sinh \rho}{T} \right) \\ -p_{\mathrm{T}} \sinh \rho \, K_0 \left(\frac{m_{\mathrm{T}} \cosh \rho}{T} \right) \, I_1 \left(\frac{p_{\mathrm{T}} \sinh \rho}{T} \right) \right\}$$

 $\rho = \operatorname{atanh}(\beta_{\mathrm{T}}^{\mathrm{s}}(r/R)^{n})$

'blast wave parametrization' of spectral shape with T = 156.5 MeV and parameters from MUSIC: n = 0.85 and $\beta_{max} = \beta^{s}T = 0.62$

J/ψ spectra from SHMc and parametrization of hydro freezeout hypersurface

A. Andronic, P. Braun-Munzinger, M. Koehler, K. Redlich, J. Stachel, PLB 797 (2019) 134836 arXiv:1901.09200 Pb-Pb $\sqrt{s_{NN}} = 5 \text{ TeV}$ Centr. 0-20% |y|<0.9 10⁻¹ 10⁻⁴ Statistical hadronization model do^{pp}_{ct} / dy × shad. = 0.532 ± 0.096 mb 10⁻⁵ 0 p_T (GeV)

- $R_{\rm AA}$ ALICE Pb–Pb,0–10%, $\sqrt{s_{NN}}$ = 5.02 TeV Inclusive J/ψ , $|\gamma| < 0.9$ Data Transport (R.Rapp et al.) Transport (P.Zhuang et al.) SHMc (A.Andronic et al.) Energy loss (F.Arleo et al.) 0 15 5 10 R_{A} ALICE Pb–Pb, 0–20%, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ Inclusive J/ψ , 2.5 < y < 4 Data Transport (R.Rapp et al.) Transport (P.Zhuang et al.) SHMc (A.Andronic et al.) Energy loss (F.Arleo et al.) 0 5 10 15 20 0 $p_{_{\rm T}}\,({\rm GeV}/c)$
- at low and intermediate p_t very good description of data
- beyond 5 GeV there is additional source beyond statistical hadronization
 e.g. nonthermalized component

new approach to spectra and v₂: use Cooper-Frye freeze-out of hydrodynamics codes directly

at T=156.5 MeV from MUSIC solid line: FluiduM

J/ψ spectra new approach

- spectra harder by about 1 GeV, in hydro many fluid cells at large velocities not accounted for by simple blast wave parametrization
- for central collisions somewhat too much flow are charm quarks reaching the very outer front of the expanding fireball?

What about $\psi(2S)$?

inclusive $\psi(2S)$

- first measurement in PbPb down to pt=0
- factor 2 suppressed relative to J/ψ

in SHMc excited state population suppressed by Boltzmann factor - data 1.8 σ above SHMc for most central bin

within stat. hadronization approach, an unexpected result
 → little room to accommodate in a likely physical scenario
 but: feeding from b is not subtracted in data, expected to be substantial!

future opportunities:

- higher precision $\psi(2S)$, also mid-y
- χ_c maybe only in ALICE3?

deconfinement temperature from charmonium spectrum

J. Stachel, EMMI (anti-)nuclei RRTF 2024

ψ (2S) spectrum

A. Andronic, P. Braun-Munzinger, J. Brunßen, J. Crkovska, J. Stachel, V. Vislavicius, M. Völkl, arXiv: 2308.14821

- for parameter free calculation pretty good agreement
- tendency towards somewhat too hard spectrum from model
- -> needs more data

first calculation of J/ ψ flow in SHMc plus hydro approach

significant flow arises over large pt range, difficult for other models
 for semi central collisions magnitude of flow over predicted

Spectra of D mesons and Λ_c baryons

for open heavy flavor hadrons strong contribution from resonance decays

- include all known charm hadron states as of PDG2020 in SHMc
- compute decay spectra with FastReso: 76 2-body and 10 3-body decays

(A. Mazeliauskas, S. Floerchinger, E. Grossi, D. Teaney, EPJ C79 (2019) 284)

A.Andronic, P.Braun-Munzinger, M.Köhler, A.Mazeliauskas, K.Redlich, JS,V.Vislavicius JHEP 07 (2021) 035

Optimally matched blast wave parameters

instead of inserting dozens of charmed hadrons into MUSIC, resort to blast wave parametrization again but now we have advantage to be able to compare to 'true' hydro J/ ψ spectrum \rightarrow blastwave parameters modeled such that mean $\beta\gamma$ of hydrodynamics is matched

with $\beta_{max} = 0.76$ good matching can be achieved (red vs blue curves for core)

Open charm spectra – examples D^0 and Λ_c

Charm quark spatial distribution at hadronization

A. Andronic, P. Braun-Munzinger, H. Brunßen, J. Crkovska, J. Stachel, V. Vislavicius, M. Völkl, arXiv: 2308.14821

strong indication that charm quarks are largely thermalized in terms of momenta

but since thermalization takes time, spatial distribution could lag behind front of expanding fireball

no experimental input production of charm quarks very compact (N_{coll})

test: cut off outermost 1 fm in spatial distribution (dashed line)

 \rightarrow this goes in direction of matching exp. data

Future opportunities: $\chi_{c1}(3872)$

note: dramatic enhancement at low pt predicted CMS addresses only very high pt part

What about Tcc⁺ recently discovered by LHCb

- if statistical hadronization is universal, it's production cross section will fall on the 2 charm quark line at the measured mass, practically identical to $\chi_{c1}(3872)$ about 1% of J/ ψ
- definitely no preformed state at charm production, two c quarks

Multi-charmed baryons

Figure 35: Expected Ξ_{cc}^{++} mass peak and background in pp collisions with $\mathscr{L}_{int} = 18 \, \text{fb}^{-1}$

Dependence of Ω_{ccc} production yields on system size for a run time of 10⁶ s

arXiv: 2211.02491	0-0	Ar-Ar	Kr-Kr	Xe-Xe	Pb-Pb
$\sigma_{\rm inel}(10\%){\rm mb}$	140	260	420	580	800
$T_{\rm AA}(0-10\%){ m mb}^{-1}$	0.63	2.36	6.80	13.0	24.3
$\mathcal{L}(\mathrm{cm}^{-2}\mathrm{s}^{-1})$	$4.5\cdot10^{31}$	$2.4\cdot10^{30}$	$1.7\cdot 10^{29}$	$3.0\cdot10^{28}$	$3.8\cdot10^{27}$
			$\mathrm{d}\sigma_{\mathrm{c}\overline{\mathrm{c}}}/\mathrm{d}y = 0.53\mathrm{mb}$		
$\mathrm{d}N_{\Omega_{ccc}}/\mathrm{d}y$	$8.38\cdot10^{-8}$	$1.29\cdot 10^{-6}$	$1.23\cdot10^{-5}$	$4.17\cdot10^{-5}$	$1.25\cdot10^{-4}$
Ω_{ccc} Yield	$5.3\cdot 10^5$	$8.05\cdot 10^5$	$8.78\cdot 10^5$	$7.26 \cdot 10^5$	$3.80\cdot 10^5$
			$\mathrm{d}\sigma_{\mathrm{c}\overline{\mathrm{c}}}/\mathrm{d}y = 0.63\mathrm{mb}$		
$\mathrm{d}N_{\Omega_{ccc}}/\mathrm{d}y$	$1.44 \cdot 10^{-7}$	$2.33\cdot 10^{-6}$	$2.14\cdot 10^{-5}$	$7.03\cdot10^{-5}$	$2.07\cdot 10^{-4}$
Ω_{ccc} Yield	$9.2\cdot 10^5$	$1.45\cdot 10^6$	$1.53\cdot 10^6$	$1.22\cdot 10^6$	$6.29\cdot 10^5$

current estimates for luminosities for LHC for lighter nuclei somewhat less optimistic \rightarrow optimum for Xe-Xe with 3.9-6.5 10⁵ Ω_{ccc} per year

Feasibility for c deuteron in ALICE3

main combinatorial background from primary deuterons can be effectively suppressed due to superb vertex resolution \rightarrow significance 51

1 month PbPb collisions = 5.6 nb^{-1}

abundance ct factor 350 less, significance factor 18 less, needs all of Run5+6 (factor 6)

Conclusions

strong experimental evidence for charm quark thermalization in PbPb collisions at LHC suggests statistical treatment of hadronization

extension of SHM to open and hidden charm sector possible, based on presence of deconfined, thermalized charm quarks

- only experimental input needed: total charm production cross section

obtain parameterfree description of charmonium and open charm yields and spectra as well as flow coefficients caveats:

- still no measured total charm cross section in PbPb collisions
- puzzle of large enhancement of charmed baryons in pp compared to ee or ep how about PbPb?
- \rightarrow answers will come with much increased luminosity sampled in LHC Run3/4

predictions for complete spectrum of multicharm and exotic charmed hadrons

- some answers in Run3/4, full exploitation with ALICE3

backup

Analysis of yields of produced hadronic species in statistical model – grand canonical

partiction function Z(T,V) contains sum over the full hadronic mass spectrum and is fully calculable in QCD

for each hadron species I the grand canonical statistical operator is:

$$\ln Z_{i} = \frac{Vg_{i}}{2\pi^{2}} \int_{0}^{\infty} \pm p^{2} dp \ln(1 \pm \exp(-(E_{i} - \mu_{i})/T))$$

leading to particle densities: $n_i = N/V = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 \, \mathrm{d}p}{\exp((E_i - \mu_i)/T) \pm 1}$

for every conserved quantum number there is a chemical potential:

$$\mu_{i} = \mu_{B}B_{i} + \mu_{S}S_{i} + \mu_{I_{3}}I_{i}^{3}$$

but can use conservation laws to constrain V, μ_S, μ_{I_3}

fit at each energy provides values for T and []b

use full hadronic mass spectrum from the PDG to compute 'primordial yields' and feeding from strong decays

Results on Debye screening from lattice QCD

- after a decade of debate, now some agreement how to extract effective heavy quark potential
- starting from: color singlet free energy \rightarrow general consensus: potential has real and imaginary part

- at LHC all quarkonia should be Debye screened
- considering formation time of hadrons, they should not form at high T at all

Relevant time scales

formation of ccbar: in hard initial scattering on time scale $1/2m_c$ with $m_c = 1.3 \text{ GeV} \rightarrow \tau_{ccbar} = 0.08 \text{ fm/c}$

typical hadron formation time: τhadron order 1 fm/c (Blaizot/Ollitrault 1989 Hüfner, Ivanov, Kopeliovich, and Tarasov 2000) W. Brooks, QM09: description of recent JLAB and HERMES hadron production data in color dipole model -> time scale 5 fm/c

comparable to or longer than QGP formation time: $\tau_{QGP} \approx 1$ fm/c at SPS, < 0.5 fm/c at RHIC, ≈ 0.1 fm/c at LHC

at LHC even color octet state not formed before QGP (H.Satz 2006)

 $\tau_8 = 1/\sqrt{2m_c\Lambda_{QCD}} \approx 0.25\,\mathrm{fm}$

collision time: $t_{coll} = 2R/\gamma_{cm}$ at RHIC 0.1 fm/c, at LHC < 5 10⁻³ fm/c

Time scales continued

ccbar pairs are formed at collision time scale $t_{coll} = \Box_{ccbar}$

collision time scale comparable to plasma formation time scale and hadron formation time scale at FAIR and SPS $t_{coll} = \Box_{ccbar} \cong \Box_{QGP} \cong \Box_{hadron}$

but at RHIC and much more pronounced at LHC there is the following hierarchy: $t_{coll} = [c_{cbar} \ll [QGP \ll [hadron]]$

expect that cold nuclear matter absorption effects decrease from SPS to RHIC and are totally irrelevant at LHC

Measurement of charm production cross section

very hard struggle to deal with (irreducible) combinatorial background, successful

Charm cross section – nuclear effects

Charm quark thermalization

LHC data: strong charmed hadron elliptic flow and energy loss (RAA) point to large degree of charm quark thermalization in QGP modelling in terms of heavy quark diffusion in hot and dense medium leads to spatial diffusion coefficients 1.5 < 2pTD < 4.5 at T_c \rightarrow t_{kin} = 2.5 - 7.6 fm/c

IQCD:

D from gradient flow on color-electric two-point function (leading order in 1/M expansion)

$$2\pi TD = \frac{4\pi}{\kappa/T^3} \propto \tau_{\rm kin} \frac{T^2}{M}$$

quenched QCD, but tendency to go down in full QCD (preliminary, Altenkort QM2022)

consistent picture: thermalization in QGP

Charm cross section pp collisions

fragmentation into L_c factor 4 increased vs e+ecan be reproduced by

- some PYTHIA tunes with CR or

 statistical model by about doubling the charmed baryon states as predicted by RQM or IQCD and using T = 170 MeV but at LHC among many newly discovered

states only 7 charmed baryons

J/y production in PbPb collisions: LHC relative to RHIC

J/ψ and statistical hadronization

production in PbPb collisions at LHC consistent with deconfinement and subsequent statistical hadronization within present uncertainties main uncertainty: open charm cross section

charmonium at LHC: peaks at mid-y and strong enhancement at low transverse momentum

nuclear modification factor:
$$R_{AA}(p_T) = \frac{dN^{AA}/dp_T}{\langle N_{coll} \rangle dN^{pp}/dp_T}$$

the multi-charm hierarchy

open and hidden charm hadrons, including exotic objects, such as X-states, c-deuteron, c-triton, pentaquark, Ω_{ccc}

emergence of a unique pattern, due to g_c^n and mass hierarchy perfect testing ground for deconfinement for LHC Runs3 and beyond

J/ψ spectra from SHMc and parametrization of hydro freeze-out hypersurface

new approach to spectra: use Cooper-Frye freeze-out of MUSIC at 156.5 MeV directly instead of blast wave parameterization

J/y yield MUSIC normalized to SHMc yield corona unchanged

significantly harder spectrum to earlier approach major influence of thermal contribution out to 9 GeV/c

a first look at J/y v2 in this approach

- Weight v₂ of thermalized J/ψ with core fraction for full v₂ estimate
- No intuitive explanation why thermalized v₂ changes sign at high p_T, but core fraction is almost 0 there
- v₂ based on reaction plane of event
- For semiperipheral events, smooth peak, while data shows flat plateau
- Rise and p_T-extent of v₂ reproduced, suggesting that v₂ out to 9 GeV/c could be due to thermalized contribution
- Same approach can also be used for v₃, but relevant plane needs to be extracted from initial spatial anisotropy instead

Polarization of J/y relative to event plane

clear signal observed by ALICE, increase towards lower pt reaching 3.9 s makes early effect due to magnetic field unlikely link to vorticity and spin-orbit coupl.?

charm fugacities and canonical suppression factors

different collision systems:

blast wave parametrization of transverse momentum spectrum

$$\frac{\mathrm{d}^{2}N}{2\pi p_{\mathrm{T}} dp_{\mathrm{T}} dy} = \frac{2J+1}{(2\pi)^{3}} \int \mathrm{d}\sigma_{\mu} p^{\mu} f(p)$$

$$= \frac{2J+1}{(2\pi)^{3}} \int_{0}^{r_{\mathrm{max}}} \mathrm{d}r \ \tau(r)r \left[K_{1}^{\mathrm{eq}}(p_{\mathrm{T}}, u^{r}) - \frac{\partial\tau}{\partial r} K_{2}^{\mathrm{eq}}(p_{\mathrm{T}}, u^{r}) \right]$$

$$K_{1}^{\mathrm{eq}}(p_{\mathrm{T}}, u^{r}) = 4\pi m_{\mathrm{T}} I_{0} \left(\frac{p_{\mathrm{T}} u^{r}}{T} \right) K_{1} \left(\frac{m_{\mathrm{T}} u^{\tau}}{T} \right)$$

$$K_{2}^{\mathrm{eq}}(p_{\mathrm{T}}, u^{r}) = 4\pi p_{\mathrm{T}} I_{1} \left(\frac{p_{\mathrm{T}} u^{r}}{T} \right) K_{0} \left(\frac{m_{\mathrm{T}} u^{\tau}}{T} \right)$$

$$K_{2}^{\mathrm{eq}}(p_{\mathrm{T}}, u^{r}) = 4\pi p_{\mathrm{T}} I_{1} \left(\frac{p_{\mathrm{T}} u^{r}}{T} \right) K_{0} \left(\frac{m_{\mathrm{T}} u^{\tau}}{T} \right)$$

$$K_{2}^{\mathrm{eq}}(p_{\mathrm{T}}, u^{r}) = 4\pi p_{\mathrm{T}} I_{1} \left(\frac{p_{\mathrm{T}} u^{r}}{T} \right) K_{0} \left(\frac{m_{\mathrm{T}} u^{\tau}}{T} \right)$$

$$K_{2}^{\mathrm{eq}}(p_{\mathrm{T}}, u^{r}) = 4\pi p_{\mathrm{T}} I_{1} \left(\frac{p_{\mathrm{T}} u^{r}}{T} \right) K_{0} \left(\frac{m_{\mathrm{T}} u^{\tau}}{T} \right)$$

$$K_{2}^{\mathrm{eq}}(p_{\mathrm{T}}, u^{r}) = 4\pi p_{\mathrm{T}} I_{1} \left(\frac{p_{\mathrm{T}} u^{r}}{T} \right) K_{0} \left(\frac{m_{\mathrm{T}} u^{\tau}}{T} \right)$$

$$K_{2}^{\mathrm{eq}}(p_{\mathrm{T}}, u^{r}) = 4\pi p_{\mathrm{T}} I_{1} \left(\frac{p_{\mathrm{T}} u^{r}}{T} \right) K_{0} \left(\frac{m_{\mathrm{T}} u^{\tau}}{T} \right)$$

$$K_{2}^{\mathrm{eq}}(p_{\mathrm{T}}, u^{r}) = 4\pi p_{\mathrm{T}} I_{1} \left(\frac{p_{\mathrm{T}} u^{r}}{T} \right) K_{0} \left(\frac{m_{\mathrm{T}} u^{\tau}}{T} \right)$$

$$K_{2}^{\mathrm{eq}}(p_{\mathrm{T}}, u^{r}) = 4\pi p_{\mathrm{T}} I_{1} \left(\frac{p_{\mathrm{T}} u^{r}}{T} \right) K_{0} \left(\frac{m_{\mathrm{T}} u^{\tau}}{T} \right)$$

$$K_{1}^{\mathrm{eq}}(p_{\mathrm{T}}, u^{r}) = 4\pi p_{\mathrm{T}} I_{1} \left(\frac{p_{\mathrm{T}} u^{r}}{T} \right) K_{0} \left(\frac{m_{\mathrm{T}} u^{\tau}}{T} \right)$$

$$K_{1}^{\mathrm{eq}}(p_{\mathrm{T}}, u^{r}) = 4\pi p_{\mathrm{T}} I_{1} \left(\frac{p_{\mathrm{T}} u^{r}}{T} \right) K_{0} \left(\frac{m_{\mathrm{T}} u^{\tau}}{T} \right)$$

$$K_{1}^{\mathrm{eq}}(p_{\mathrm{T}}, u^{r}) = 4\pi p_{\mathrm{T}} I_{1} \left(\frac{p_{\mathrm{T}} u^{r}}{T} \right)$$

$$K_{1}^{\mathrm{eq}}(p_{\mathrm{T}}, u^{r}) = 4\pi p_{\mathrm{T}} I_{1} \left(\frac{p_{\mathrm{T}} u^{r}}{T} \right)$$

mid-rapidity yields for Pb-Pb collisions

Particle	$\mathrm{d}N/\mathrm{d}y$ core (SHMc)	$\mathrm{d}N/\mathrm{d}y$ corona	$\mathrm{d}N/\mathrm{d}y$ total
		0-10%	
D^0	6.40 ± 0.95	0.409 ± 0.034	6.81 ± 0.95
D^+	2.84 ± 0.42	0.181 ± 0.026	3.02 ± 0.42
D^{*+}	2.51 ± 0.37	$0.166 \ {+}0.049 {-}0.022$	2.67 ± 0.37
D_s^+	2.29 ± 0.34	0.076 + 0.025 - 0.016	2.36 ± 0.34
Λ_c^+	1.39 ± 0.21	0.260 ± 0.029	1.64 ± 0.21
Ξ_c^0	0.280 ± 0.041	0.093 ± 0.036	0.373 ± 0.055
J/ψ	0.122 +0.038-0.033	(5.25±0.38)·10 ^{−3}	0.127 + 0.038 - 0.033
$\psi(2S)$	(3.43 +1.1-0.9)·10 ⁻³	$(7.87 \pm 0.57) \cdot 10^{-4}$	(4.22 +1.1-0.9)·10 ⁻³
		30-50%	
D^0	0.876 ± 0.131	0.202 ± 0.017	1.08 ± 0.132
D^+	0.388 ± 0.058	0.090 ± 0.013	0.477 ± 0.059
D^{*+}	0.343 ± 0.051	0.082 + 0.024 - 0.011	$0.425 \ {+}0.057 {-}0.052$
D_s^+	0.313 ± 0.047	0.038 + 0.012 - 0.008	0.350 ± 0.048
Λ_c^+	0.190 ± 0.028	0.128 ± 0.014	0.317 ± 0.032
Ξ_c^0	0.038 ± 0.006	0.046 ± 0.018	0.084 ± 0.019
J/ψ	$(1.17 + 0.32 - 0.28) \cdot 10^{-2}$	(2.59±0.19)·10 ^{−3}	$(1.43 + 0.32 - 0.28) \cdot 10^{-2}$
$\psi(2S)$	(3.28 +0.90-0.79)·10 ⁻⁴	(3.90±0.28) ⋅10 ⁻⁴	(7.17 +0.94-0.84)·10 ⁻⁴

system size dependence of yields

due to different charm quark content different canonical suppression for multicharm very light collision systems not favored

Spectra of D mesons and Λ_c baryons

for open heavy flavor hadrons strong contribution from resonance decays

- include all known charm hadron states as of PDG2020 in SHMc
- compute decay spectra with FastReso: 76 2-body and 10 3-body decays

(A. Mazeliauskas, S. Floerchinger, E. Grossi, D. Teaney, EPJ C79 (2019) 284)

thermal part of D⁰ spectrum well reproduced by SHMc + hydro flow + decays as for charmonia, there is need for another source at higher pt

Ratios of charm hadron to D⁰ spectra

Charm-hadron spectrum: PDG

excellent agreement for D mesons considering there are no free parameters, but too low for Λ_c

Ratios of charm hadron to D⁰ spectra

Charm-hadron spectrum: enhanced c-baryons (tripled excited states)

example: X(3872)

Opportunities hadronization into nuclei

elucitate mechanism of formation of nuclei: SHM for QGP hadronizing into compact multiquark states \leftrightarrow coalescence

(anti-)(hyper-)nuclei ALICE Run3/4 - 10nb⁻¹

³He, ³LHe, ⁴He as function of centrality (source size) spectrum ⁴He ⁴LH and ⁴LHe 5s level in reach S-hyper-nuclei: search for ³SH exotic QCD bound states: hexaquark

ALICE3: 4_L He and 5_L He 5_L He not yet discovered (m about as expected W_{ccc}) A = 6 should become accessible 6_L i and 6_H e (lightest halo nucleus)

is hadronization governed by mass and quantum numbers only?

J/psi and hyper-triton described with the same flow parameters in the statistical hadronization model

from review: hypernuclei and other loosely bound objects produced in nuclear collisions at the LHC, pbm and Benjamin Doenigus, J. Stachel, EMACan P. J. Stachel, Stachel, EMACAN P. J. Stachel, EMACAN P. J. Stachel, Stachell, Stac

from pp to Pb-Pb collisions: smooth evolution with system size

universal hadronization can be described with few parameters in addition to T and µB transition from canonical to grand-canonical thermodynamics

J. Stachel, EMMI (anti-)nuclei RRTF 2024

Thermalization of beauty?

strong reduction of RAA and significant v₂, but both a factor 2 less pronounced than for prompt D0 \rightarrow indication that beauty quarks thermalize only partly only the thermalized fraction should hadronize statisticlly

Bottomonia in SHMb assuming full thermalization

indeed, assumption of fully thermalized b-quarks fails to reproduce Y(1S) by factor 2-3 for central collisions but: gb = 10⁹ so Y is scaled up from thermal yield by 10¹⁸
 so, to come without any free parameter within a factor 2-3 is not a minor feat

Bottomonia assuming partial thermalization

factor 2-3 reproduces Y yields could be in line with open beauty energy loss and flow