Understanding light (anti-)nuclei production at RHIC and LHC

Dynamic light nuclei production in SMASH

EMMI Rapid Reaction Task Force (RRTF)

8-12 April 2024

Introduction

- Production of light nuclei in central Au-Au and Pb-Pb collisions
- Framework originally developed for highest RHIC and LHC energies
- RHIC Beam Energy Scan II: 7.7 up to 19.6 GeV
- The investigated nuclei are: deuteron d, helium ³He, triton t and hypertriton $^{3}_{\Lambda}$ H • Loosely bound objects: a few 100 keV ($^3_{\Lambda}$ H) up to a few MeV (d, t, 3 He)

EMMI RRTF

Motivation

- How can nuclei with low binding energies form at high temperatures? (Snowballs in hell) see Oliinychenko et al., Phys.Rev. C99 (2019)
- Investigate with a dynamical model
- Compare to coalescence approach
- Study the QCD phase diagram and the critical point
- Compare to recent data from STAR experiment

https://www.usqcd.org/extreme.html

Model description

• Hydrodynamic evolution + hadronic rescattering

MUSIC: 3+1D viscous hydro

switch at $\epsilon = 0.26 \text{GeV/fm}^3$

Schenke et al., Phys.Rev.C 82 (2010)

EMMI RRTF

Martha Ege, Justin Mohs and Hannah Elfner

SMASH: hadronic afterburner

Weil et al., Phys.Rev.C 94 (2016)

Model description

- SMASH Simulating Many Accelerated Strongly-interacting Hadrons https://smash-transport.github.io
- Optionally treat nuclei as degrees of freedom
- Produce the nuclei in multi-particle reactions: $d\pi \leftrightarrow NN \quad dX \leftrightarrow npX \quad {}^{3}HeX \leftrightarrow nppX \quad tX \leftrightarrow nnpX \quad {}^{3}_{\Lambda}HX \leftrightarrow np\LambdaX$ where X can either be a pion or a nucleon (n, p)
- Realized with a stochastic collision criterion Staudenmaier et al., Phys.Rev.C 104 (2021)
- Alternatively create nuclei by coalescence

- Oliinychenko et al., Phys.Rev. C99 (2019)
- Martha Ege, Justin Mohs and Hannah Elfner

Stochastic collision criterion

- Divide space into grid cells with volume $\Delta^3 x$
- For 2 to 2 reactions: $P_{2\to 2} = \frac{\Delta t}{\Delta^3 x} v_{\text{rel}} \sigma_{2\to 2}(\sqrt{s})$

• For 3 to 2 reactions:

$$P_{3\to 2} = \left(\frac{g_{1'}g_{2'}}{g_1g_2g_3}\right) \frac{S!}{S'!} \frac{\Delta t}{(\Delta^3 x)^2} \frac{E_{1'}E_{2'}}{2E_1E_2E_3} \frac{\Phi_2(s)}{\Phi_3(s)} v_{\mathsf{rel}}\sigma_{2\to 3}(\sqrt{s})$$

• Faster approach equilibrium with multi-particle reactions

Staudenmaier et al., Phys.Rev.C 104 (2021)

EMMI RRTF

Box results

- Particle multiplicities over time in a box
- Compare to analytical solutions from rate equations
- Equilibrium multiplicities are correctly reproduced
- Slower equilibration compared to rate eq. not yet understood

Transverse momentum spectra

- p_T -spectra and coalescence parameter B_2 for LHC-energies
- Deuterons are formed via intermediate resonance
- Good description of the data points

π x 5 1000 100 $\frac{d^2N}{dydp_T}$ $2\pi p$ 0.01 10^{-3} 10^{-4}

EMMI RRTF

Oliinychenko et al., Phys.Rev. C99 (2019)

Oliinychenko et al., MDPI Proc. (2018)

Transverse momentum spectra

- Production of A=2 and A=3 nuclei with multi-particle reactions or coalescence
- Coalescence: Nuclei are formed if the nucleons are close enough in phase space
- Chosen parameters: $\Delta r = 3$ fm, $\Delta p = 0.3$ GeV
- Afterburner stage is important to describe the spectra correctly

STAR collaboration, Phys.Rev.C 99 (2019)

STAR collaboration, Phys.Rev.Lett. 130 (2023)

Transverse momentum spectra

Martha Ege, Justin Mohs and Hannah Elfner

Martha Ege, Justin Mohs and Hannah Elfner

Multiplicities

- Number of deuterons over time at 7.7 GeV (RHIC)
- Compare particlization with and without deuterons
- Compare multi-particle reactions to intermediate resonance treatment
- Quick equilibration of multi-particle reactions leads to similarity between the two particlization scenarios

Staudenmaier *et al.*, Phys.Rev.C 104 (2021)

11

Multiplicities

Mid-rapidity multiplicities of light nuclei as a function of time

EMMI RRTF

4π multiplicities and production mechanisms

• Helium and triton show similar behavior: nuclei disintegration dominates \Rightarrow rescattering reduces yields

Martha Ege, Justin Mohs and Hannah Elfner

4π multiplicities and production mechanisms

 Hypertriton production and destruction are balanced \Rightarrow yields equal to hypersurface at the end

EMMI RRTF

Particle ratios

• The single ratios are well described

• The double ratio is related to the critical point

EMMI RRTF

Martha Ege, Justin Mohs and Hannah Elfner

STAR collaboration, Phys.Rev.Lett. 130 (2023)

Summary

- Dynamic production of light nuclei in SMASH with multi-particle reactions
- p_T -spectra and B_2 -spectra for different energies fit the data points from STAR and ALICE
- Multiplicities and collision rates: investigation of the different processes Particle ratios are calculated and compared to STAR data

Outlook

- Sensitivity for numerical details
- ${}_{\Lambda}^{3}$ H production in CC-collision at HADES-energies

EMMI RRTF

Stochastic collision criterion

- Probability for a reaction of a given particle set
- Defined as the number of reactions over the number of all possible particle combinations $\Delta N_{\text{reactions}}$ inside a sub-volume $\Delta^3 x$ and time interval ΔT : $P_{n \to m} = \frac{\Delta N_{\text{reactions}}}{\prod_{i=1}^{n} \Delta N_{i}}$
- Calculated collision criterions are:

D —	$\left(\begin{array}{c} g_{1'}g_{2'} \end{array}\right)$	<i>S</i> !		Δt	$E_{ m c}$	$E_{1'}E_{2'}$
$1_{3\rightarrow 2}$ —	$\left(\frac{g_1g_2g_3}{g_1g_2g_3} \right)$	$\overline{S'!}$	$(\Delta$	$(^{3}x)^{2}$	$2E_{1}$	E_2E
$P_{4\rightarrow 2} =$	<i>8</i> ₁ ′ <i>8</i> ₂ ′		<u>S!</u>	Δt		
	$\sqrt{g_1g_2g_3g_4}$		S'!	$(\Delta^3 x)$) ³ 1	$6E_{1}$

Staudenmaier et al., Phys.Rev.C 104 (2021)

$$P_{2\to2} = \frac{\Delta t}{\Delta^3 x} v_{\text{rel}} \sigma_{2\to2}(\sqrt{s}) \quad \text{(for d)}$$

$$\frac{\Phi_2(s)}{\Phi_3(s)} v_{\text{rel}} \sigma_{2\to3}(\sqrt{s}) \quad \text{(for d)}$$

$$\frac{1}{E_2 E_3 E_4} \frac{\lambda(s; m_{1'}^2, m_{2'}^2)}{\Phi_4} \frac{\sigma_{2\to4}(\sqrt{s})}{4\pi s} \quad \text{(for } {}^3\text{He, t, } {}^3\text{H$$

Rate equations

- Time dependent particle multiplicities with $n_i^{th}(T) = \frac{g_i T}{2pi^2 h^3} \int dM M^2 K_2(M/T) A$
- Rate equations:

$$n_{d}^{th}\dot{\lambda}_{d} = (R_{\pi d} + R_{Nd})(\lambda_{p}^{2} - \lambda_{d})$$

$$\lambda_{p}^{th}\dot{\lambda}_{N} = -(R_{\pi d} + R_{Nd})(\lambda_{p}^{2} - \lambda_{d})$$

$$\dot{\lambda}_{\pi} = 0$$

$$R_{\pi d} = \langle \sigma v_{rel} \rangle_{\pi d} n_{\pi}^{th} n_{d}^{th} \lambda_{\pi}$$

$$n_{d}^{th}\dot{\lambda}_{d} = (R_{\pi d} + R_{Nd})(\lambda_{p}^{2} - \lambda_{d})$$

$$n_{p}^{th}\dot{\lambda}_{N} = -(R_{\pi d} + R_{Nd})(\lambda_{p}^{2} - \lambda_{d})$$

$$\dot{\lambda}_{\pi} = 0$$

$$R_{\pi d} = \langle \sigma v_{rel} \rangle_{\pi d} n_{\pi}^{th} n_{d}^{th} \lambda_{\pi}$$

$$\dot{\lambda}_{d} = (R_{\pi d} + R_{Nd})(\lambda_{p}^{2} - \lambda_{d})$$

$$\dot{\lambda}_{N} = -(R_{\pi d} + R_{Nd})(\lambda_{p}^{2} - \lambda_{d})$$

$$\dot{\lambda}_{\pi} = 0$$

$$R_{\pi d} = \langle \sigma v_{\text{rel}} \rangle_{\pi d} n_{\pi}^{th} n_{d}^{th} \lambda_{\pi}$$

$$R_{Nd} = \langle \sigma \rangle$$

Martha Ege, Justin Mohs and Hannah Elfner

EMMI RRTF

$$N_i = V n_i^{th}(T) \lambda_i$$

$$A(M)$$

 $v_{rel}\rangle_{Nd}2n_{p}^{th}n_{d}^{th}\lambda_{N}$

Production mechanisms for deuterons at 7.7, 14.5 and 19.6 GeV

EMMI RRTF

Production mechanisms for tritons at 7.7, 14.5 and 19.6 GeV

EMMI RRTF

Martha Ege, Justin Mohs and Hannah Elfner

Backup - 4

Production mechanisms for heliums at 7.7, 14.5 and 19.6 GeV

EMMI RRTF

Martha Ege, Justin Mohs and Hannah Elfner

Backup - 5

Production mechanisms for hypertritons at 7.7, 14.5 and 19.6 GeV

