Coalescence and Correlations

Discuss!

Maximilian Mahlein TU Munich Based on: arXiv:2404.03352 & EPJC. C 83, 804 (2023)

Wigner function formalism Theory

• The coalescence probability can be expressed in terms of the distance and relative momentum of the two nucleons

$$p(\sigma,q) = \int d^3r_p d^3r_n h(r_n)h(r_p)W(q,r)$$

• With W(q,r) the Wigner function of the deuteron

$$W(\vec{q},\vec{r}) = \int d^{3}\zeta \ \Psi(\vec{r}+\vec{\zeta}/2)\Psi^{*}(\vec{r}-\vec{\zeta}/2)e^{i\vec{q}\vec{\zeta}}$$

• And h(r_i) the single particle spatial distribution

$$h(\vec{r}_n)h(\vec{r}_p) = \frac{1}{(2\pi\sigma^2)^3} \exp\left(-\frac{\vec{r}_n^2 + \vec{r}_p^2}{2\sigma^2}\right)$$

SMM et al .Eur.Phys.J.C 83 (2023) 9, 804

Wigner function formalism Theory

• The coalescence probability can be expressed in terms of the distance and relative momentum of the two nucleons

$$p(\sigma,q) = \int d^3r_p d^3r_n h(r_n)h(r_p)W(q,r)$$

• With W(q,r) the Wigner function of the deuteron

$$W(\vec{q},\vec{r}) = \int d^{3}\zeta \ \Psi(\vec{r}+\vec{\zeta}/2) \Psi^{*}(\vec{r}-\vec{\zeta}/2) e^{i\vec{q}\vec{\zeta}}$$

Deuteron Wave function

• And h(r_i) the single particle spatial distribution

$$h(\vec{r_n})h(\vec{r_p}) = \frac{1}{(2\pi\sigma^2)^3} \exp\left(-\frac{\vec{r_n^2} + \vec{r_p^2}}{2\sigma^2}\right)$$

Gaussian Source

SMM et al .Eur.Phys.J.C 83 (2023) 9, 804

SMM et al .Eur.Phys.J.C 83 (2023) 9, 804

EMMI Rapid Reaction Task Force - April 10th

Coalescence and Correlations Maximilian Mahlein

- 4

EMMI Rapid Reaction Task Force - April 10th Coalescence and Correlations Maximilian Mahlein

5

works

Coalescence Results EPOS

Angular correlations

- Delta Phi of pp (pn) pairs
- Not reproduced by EPOS or Pythia
- No real control over these behaviours in general purpose event generators

SMM et al .Eur.Phys.J.C 83 (2023) 9, 804

Careful: rather technical!

Event Loop:

The ToMCCA Model

Event Loop

Event Loop:

- Get number of charged particles
 - 1. Poissonian distribution with given mean
 - 2. dN/deta measurements by ALICE
 - 3. Event generator output (Fitted using Erlang dist)

The ToMCCA Model

Event Loop

Event Loop:

- ➢ Get number of charged particles
- ➢ Get proton yield
- ➢ Get neutron yield

Fit all proton spectra for 5 TeV and HM using a Lévy Tsallis:

$$\frac{d^2 N}{dydp_T} = \frac{dN}{dy} \frac{p_T(n-1)(n-2)}{nC[nC+m_p(n-2)]} \left(1 + \frac{m_T-m_p}{nC}\right)^{-n}$$
Yield parameter!

1.75

1.50

1.00

0.75 0.50

Event Loop:

- Get number of charged particles
- Get proton yield
- Get neutron yield \succ

Fit all proton spectra for 5 TeV and HM using a Lévy Tsallis:

 $\frac{d^2N}{dydp_T} = \frac{dN}{dy} \frac{p_T(n-1)(n-2)}{nC[nC+m_p(n-2)]} \left(1 + \frac{m_T - m_p}{nC}\right)^{-n}$ Full parameterization as a function of multiplicity

Yield parameter!

Event Loop:

- ➢ Get number of charged particles
- ➢ Get proton yield
- ➢ Get neutron yield

Event Loop:

- ➢ Get number of charged particles
- ➢ Get proton yield
- ➢ Get neutron yield
- ➢ Loop over all protons

Event Loop:

- Get number of charged particles
- ➢ Get proton yield
- ➢ Get neutron yield
- Construction
 Const
 - Draw p_{T} from parameterization
 - Draw flat rapidity y=[-0.5,0.5]
 - Draw random $\phi=[0,2\pi)$

Event Loop:

- Get number of charged particles
- ➢ Get proton yield
- ➢ Get neutron yield
- Composition Composition
 Composition
 Composition Composition
 Compositio

18

20

EMMI Rapid Reaction Task Force - April 10th Coalescence and Correlations Maxim

Maximilian Mahlein 21

The ToMCCA Model

2

n

n

2.2

2.4

р

2.6 $\langle m_{\tau} \rangle$ (GeV/c²)

The ToMCCA Model

Event Loop

Event Loop:

- Get number of charged particles Get proton yield
- Get neutron yield
- ↔ Loop over all protons
 - Get 3D momentum of proton
 - Loop over all neutrons
 - Get 3D momentum of neutron
 - Get source size
 - Apply coalescence condition

Event Loop:

Get number of charged particles

Get proton yield

Get neutron yield

- ↔ Loop over all protons
 - Get 3D momentum of proton
 - Loop over all neutrons

Get 3D momentum of neutron

Get source size

Apply coalescence condition

ЛП

Event Loop:

- Get number of charged particles
- Get proton yield
- Get neutron yield
- Loop over all protons
 - Get 3D momentum of proton
 - Loop over all neutrons
 - Get 3D momentum of neutron
 - Get source size
 - Apply coalescence condition
 - Make deuteron, number of neutrons -1
 try next neutron

ЛП

Event Loop:

- Get number of charged particles
- Get proton yield
- Get neutron yield
- Loop over all protons
 - Get 3D momentum of proton
 - $\ensuremath{\ominus}$ Loop over all neutrons
 - Get 3D momentum of neutron
 - Get source size
 - Apply coalescence condition
 - Make deuteron, number of neutrons -1 x try next neutron

Event Loop:

- Get number of charged particles
- Get proton yield
- Get neutron yield
- Loop over all protons
 - Get 3D momentum of proton
 - $\ensuremath{\odot}$ Loop over all neutrons
 - Get 3D momentum of neutron
 - Get source size
 - Apply coalescence condition
 - Make deuteron, number of neutrons -1 X try next neutron

Next Event..

ТШ

EMMI Rapid Reaction Task Force - April 10th

Coalescence and Correlations

Maximilian Mahlein 28

EMMI Rapid Reaction Task Force - April 10th

Coalescence and Correlations

Maximilian Mahlein 29

EMMI Rapid Reaction Task Force - April 10th

Coalescence and Correlations

Maximilian Mahlein

30

ToMCCA Source Fitting

Fitting Procedure:

- Run ToMCCA with a fixed source size (e.g. 1.8 fm, flat in m_T)
- For the resulting deuteron spectra calculate the χ^2 for each bin and save it
- Reduce source size
- Repeat until source size is 0

Fit to all 5 TeV + HM pp data!

Maximilian Mahlein

31

EMMI Rapid Reaction Task Force - April 10th Coalescence and Correlations

Parameterization

- m_{T} scaling can be described by a power law $A \cdot m_{T}^{-B}$
- A: scaling with N^{1/3}_{ch} at high multiplicity and saturation to minimum size ~Proton radius
- B: Sigmoid function, motivated by the observance of constant B in Heavy Ion [1]

EMMI Rapid Reaction Task Force - April 10th Co

Coalescence and Correlations Maximilian Mahlein 32

Putting the source size back into ToMCCA:

• 5 TeV data reproduced (as expected)

Putting the source size back into ToMCCA:

- 5 TeV data reproduced (as expected)
- 13 TeV data also reproduced →not part of the fitting procedure!

٦Ш

Putting the source size back into ToMCCA:

- 5 TeV data reproduced (as expected)
- 13 TeV data also reproduced →not part of the fitting procedure!
- d/p and B₂ reproduced

Putting the source size back into ToMCCA:

- 5 TeV data reproduced (as expected)
- 13 TeV data also reproduced →not part of the fitting procedure!
- d/p and B₂ reproduced

Putting the source size back into ToMCCA:

- 5 TeV data reproduced (as expected)
- 13 TeV data also reproduced →not part of the fitting procedure!
- d/p and B₂ reproduced
- Minimum bias also reproduced

Putting the source size back into ToMCCA:

- 5 TeV data reproduced (as expected)
- 13 TeV data also reproduced →not part of the fitting procedure!
- d/p and B_2 reproduced
- Minimum bias also reproduced
 Discussi

Use this model to extrapolate to arbitrary energies (only depending on the multiplicity!)

ToMCCA Sneak Peak: PbPb and Hypertriton

Extend Model to PbPb:

- Source from ongoing ALICE analysis
- Protons tuned in similar fashion as pp
- Ignore angular correlations for now (much weaker in PbPb)
- Model fails to reproduce data

ToMCCA Sneak Peak: PbPb and Hypertriton

Extend Model to PbPb:

- Source from ongoing ALICE analysis
- Protons tuned in similar fashion as pp
- Ignore angular correlations for now (much weaker in PbPb)
- Model fails to reproduce data
- Rescattering/Regeneration in the hadronic phase?
- Proton-neutron ρ_{pn} correlations?

Discussion

Summary of discussion points

1. Pearson Number Correlation

	Uncorrelated	String	Quark	Tuned
	Emission	Fragmentation	recombination	Emission
$ ho_{pn}$	0	-0.052	-0.058	-0.024

- 2. $\Delta \phi(Nch)$ and $\Delta \phi(pT)$, $pp \rightarrow p\Lambda$ scaling
- 3. Source size predictions
- 4. Extrapolation of this model to lower energies
- 5. Hypertriton size parameters
- 6. Failure in PbPb

Additional Slides

٦Π

ТΠ

Rho_pd

46

PbPb Protons

S₃ full range

S₂ full range

STAR Au + Au -> Deuterons \sqrt{s} = 200 GeV

EMMI Rapid Reaction Task Force - April 10th

Coalescence and Correlations