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Introduction

1) Butler and Pearson, PR 129, 836 (1963): Two nucleons coalescence
          into a deuteron with the nuclear matter acting as a catalyzer. In  
          second-order perturbation theory, 

     2) Schwalzschild and Zupancic, PR 129, 854 (1963): The deuteron-to-
          proton ratio is governed by the probability of finding a neutron
          within a small sphere of radius ρ around the proton in momentum
          space
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can then be carried out quite simply, and we do so in
Sec. 4.
Consider two nucleons (neutron and proton) of

momenta Ak~ and Ak~, respectively, so that the initial
wave function fo is

&0= (1/L') exp[i(ki. ri+k2. r2)], (1)
where I is the linear dimension of a normalization cube.
The final wave function P describing a deuteron with
momentum K is then
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where H;,") and H, y") are first-order matrix elements
to and from an intermediate state j, respectively. We
devote the remainder of this section evaluating H;f ".
There are three types of contributions to (4), corre-

sponding to the three diagrams of Fig. 1. We consider
first the term, say [H;r"&)&, for which particle 1, with
wave vector ki, is scattered by V(ri) into an inter-
rnediate state, k~', and, thereafter, joined to particle 2
in a deuteron by &&(r). For this term we have

1
[II;,&'&]&——— dri exp[i(k&—k,') r,)V(ri)L'

1=—g(~ ki—ki' ~ ),II
where g is the Fourier transform of V.
Similarly, we have

[8&f&'&]&= dr&dr~ exp[i(ki' ri+k& r&)]I8LI/O
X&&(r)x(r) exp(—iK R)

(kr)~
b(K'—K) dr exp(—ik' r)&&(r)&&(r), (6)

L$LI/2

&t
= (1/LI&')&&(r) exp(iK R), (2)

where R is the c.m. coordinate -', (ri+r2), r is the relative
coordinate r~—r~, and g is the internal deuteron wave
function.
The transition probability ~(K)dK that after time t

the optical potential V(ri)+V(r2), combined with the
internal neutron-proton interaction n(r), produces a
deuteron of wave vector K in the interval dK is

41st" Izsin'(&w&ft)
&d(K)dK= p(K)dK.

ft' r&&;t'

Here H;f(" is the second-order matrix element involving
the product (V,&&), p(K) is the density of fi»al states,
and

kN;f= 8;—Ef,
where E; and Ef are the initial and final energies,
respectively.
The second-order matrix element H;f(') is given as

Fro. j.. Diagrams {a), {b), {c) illustrate the simplest means of
deuteron formation. RI, 4 are the momenta of the proton and
neutron in the initial state, q the recoil of the nucleus, and K the
deuteron momentum in the final state. In case {a) the neutron
and proton interact first with each other to form an intermediate
deuteron state. This deuteron is then scattered by the nucleus
into the final state. In case {b) the neutron is scattered into an
intermediate state by an interaction with the nucleus. The
scattered neutron and an unscattered proton then interact with
each other to form a deuteron. In case (c}a scattered proton pairs
with an unscattered neutron.

where
K'= k~'+k2

~&—~r= (ft'/m) f(sK—k2)'+v'] (10)
Thus after summing over intermediate states we

find our first contribution [H,r&'&)i as
4 C g(~K,—K~)[ff'i"']&=—,(11)
L'L'&2 [k,+-,' (K—K~)]'+y'

where
K;=kg+kg

k,= x, (ki—k2).
Thus K; arri k, are the initial c.rn. and internal wave
vectors of the two free nucleons.
The second contribution, [B;I&'&]~, with particie 2

being scattered into the intermediate state k2', is

k'= -', (k,'—kr).
If we write x(r) in the Hulthhn form

X(r) = (C/r) (e- " e '), --
the integral in (6) can be readily evaluated to be

—4W(A'/m) [1+(k"+~')/(k"+f')] (S)
where m is the nucleon mass, and A'y'/m is the deuteron
binding energy. We have actually found the e6ect of
the second term (involving f') to be quite small, and
hereafter employ simply the asymptotic form for the
deuteron wave function. For normalization of y we have

C' y'/2&r.

For the term under consideration, the energy
denominator E,—Ef is simply expressed by noting
that k&'——K—k2. We find

Nd(K) / [Np(K/2)]2

dNd(K)/dNp(K) / 4⇡⇢3
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TABLE I. Radius P p (MeV/c) of the momentum

sphere for coalescence.
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fragment, the value of p„ for calculating the ab-
solute cross sections, energy spectra, and angu-
lar distributions. The P, values are remarkably
uniform, even though absorbed into this parame-
ter are the many factors, including correlations,
not explicitly accounted for in this very simple
model.
In conclusion, we have found strong evidence

for final-state interactions in the production of
high-energy fragments (30 to 120 MeV/nucleon)
in relativistic heavy-ion-induced reactions. This
result could suggest that future work concerning
the possible detection of density effects in these
collisions should concentrate on the nucleon and
meson spectra since the energy spectra of the
composite particles can be obtained from Eq. (2)
and are shifted in energy and angle relative to
those of the nucleons. On the other hand, we
have data, showing that the particle multiplicity
increases with the size of the fragment. Thus the
observation of the larger composite particles
might be a way of selecting central collisions and
may be a sensitive probe of density effects. We
do not, however, have an understanding of the de-
tailed mechanism leading to coalescence. Equa-
tion (2) leads to a different fragment energy de-
pendence from that found in the original work of
Butler and Pearson. ' Further theoretical work
is needed to understand the difference between

20 60 20 60 20 60 106 20 60 100
EI~b (MeV/nucl. )

FIG. 3. Experimental points and calculated lines for
the double-differential cross sections of fragments
from the irradiation of uranium by Ne ions at 250
and 400 MeV/nucleon.

the two models. Earlier experimental results of
Crawford et al.' on high-energy boron to oxygen
fragments are also consistent with this model.
The high-energy tails in tQe energy spectra of
helium to beryllium fragments from uranium ir-
radiated by 5-GeV protons' can now be under-
stood by this mechanism with a reasonable value
of P, of about 140 MeV/c. This eliminates the
previously postulated apparent temperatures of
20 MeV needed to explain these tails. This mod-
el could also aid in the understanding of the scal-
ing effect seen in the production of d, t, 'He, and
He by high-energy pions and protons. '
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3) Bond, Johanson, Koonin, and Garpman, PLB 71, 43 (1977): 
Coalescence is formulated in the sudden approximation

   4) Kapusta, PRC 21, 1301 (1980): Comparison of coalescence model,
       sudden approximation, and thermal model for deuteron production.
  5) Sato and Yazaki, PLB 98, 153 (1981): Density matrix formalism for 
       evaluating the coalescence parameter.

    ν and νA are size parameters of emitting source and nuclei, 
     respectively 
     → BA decreases with decreasing source size (1/ν) and size (1/νA) 
          of nuclei  
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The Coalescence model

Wave functions for 
initial |i>=|1,2>
and final |f>=|3>
states 

Probability for particle 1 of momentum k1 and particle 2 of 
 momentum k2 to coalescence to cluster 3 with momentum K

Wigner functions

Probability for 1+2 -> 3   P = |hf |ii|2

dN

d3K
= g

Z
d3x1d

3k1d
3x2d

3k2W1(x1,k1)W2(x2,k2)

⇥W (y,k)�(3)(K� k1 � k2), y = x1 � x2, k =
k1 � k2

2
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W (y,k) =
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For a system of particles 1 and 2 with phase-space distributions fi(xi,ki) 
normalized to                                      , the number of particle 3 produced 
from coalescence of N1 of particle 1 and N2 of particle 2

Statistical factor for two particles of spin 
  J1 and J2 to form a particle of spin J  g = 2J+1

(2J1+1)(2J2+1)

The above formula can be straightforwardly generalized to multi-
particle coalescence but is usually used by taking particle Wigner 
functions as delta functions in space and momentum. 

Wigner function Wi(xi’,ki’) centers around xi and ki 

Z
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Gyulassy, Frankel, and Remler, NPA 402, 596 (1983): Generalized 
coalescence model using nucleon Wigner functions that are delta 
 functions in space and momentum, i.e., evaluating

 with

     

 It is later called by Kahana et al. the standard Wigner calculation in
 contrast to the general one which they called the quantum Wigner 
 calculation.
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In quantum Wigner approach, wave functions of particles 1 and 2 
are Gaussian wave packets

Using harmonic oscillator wave functions for the wave function
of formed particle 3, which gives its Wigner function as

�i(x0i � xi) =
1

(⇡�2)1/4
exp


� (x0i � xi)2

2�2

�
exp(ikix

0
i)

W (x0i, k
0
i) = 2e�(x0

i�xi)
2/�2

e��2(k0
i�ki)

2
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Quantum coalescence model Han, Fries & Ko, PRC 93, 045207 (2016)
Kordell, Fries & Ko, Ann. Phys. 443, 168960 (2022)

For 𝛿 = 𝜎,	one has
<latexit sha1_base64="vdEisFHPL4ZLJ6P/I+TpIR8VW/U="></latexit>
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FIG. 6. Central transverse mass spectra: ARC simulations are compared to E802 experiments. The proton data and theory are displayed
in nine rapidity bins beginning at y lab50.5 and of width Dy50.2; the deuteron data and theory appear in six such bins ending at
y lab51.5. The spectra in successive bins are reduced by factors of 10. Dynamical coalescence determines the wave packet size for the
coalescing nucleon pair, in this case after propagating their interacting comovers up to the pair light cone. There are then no free parameters
in the theory, the deuteron relative wave function being characterized by the experimentally determined point size. There is little variation
in these results with the deuteron size, at least, near the value 1.91 fm used here. Using a different prescription for the propagation point, for
example, some ‘‘average’’ time in the past, also has very little effect. Centrality is fixed using the E802 specified TMA cut. Little sensitivity
to this cut is evident here. We note the proton spectra in this figure and hereafter are automatically corrected for deuteron formation; i.e.,
coalescing protons ~and neutrons! are removed from the cascade. Since the proton spectra enter essentially quadratically in deuteron
formation, the theory is to be judged also by the matching to singles, a remark which applies to all further results.

FIG. 7. Peripheral transverse mass spectra from ARC dynamical coalescence under the same circumstances as in Fig. 6. There are fewer
deuteron rapidity bins. Peripherality is defined using the E802 prescription; there is greater sensitivity to this trigger than for central
collisions. The proton spectra give some indication of the accord between the theoretical and experimental definitions of the trigger.

54 345MODELING CLUSTER PRODUCTION AT THE BNL . . .
Kahana et al., PRC 54, 388 (1996)
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Coalescence production of light nuclei at AGS
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IEBE-VISHNU hybrid model with AMPT initial conditions

Elliptic flow of deuteron measured by ALICE  is also satisfactorily described.  
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Particle yields in thermal model
Braun-Munzinger and Donigus, NPA 987, 144 (2019)



Coalescence vs statistical production of deuteron

12
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With Np protons and Nn neutrons of temperature T uniformly distributed in
V , the deuteron number in coalescence model with Gaussian Wigner function
of width parameter � for deuteron is

N coal
d =

3

21/2

✓
2⇡

mT

◆3/2 1
�
1 + 1

mT�2

�3/2
NpNn

V

while that in the thermal model is

N thermal
d =

3

21/2

✓
2⇡

mT

◆3/2 NpNn

V
eBd/T ,

where Bd is deuteron binding energy. So

N coal
d = N thermal

d if T >> Bd and mT >> 1/�2,

i.e., temperature of nucleons is much larger than deuteron binding energy and
nucleon thermal wavelength is much smaller than deuteron size.

Why 𝑵𝐝𝐭𝐡𝐞𝐫𝐦𝐚𝐥 𝐓𝐂 = 𝑵𝐝𝐭𝐡𝐞𝐫𝐦𝐚𝐥 𝐓𝐊  ?
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Time evolution of baryon entropy in relativistic heavy 
ion collisions from the hadronic phase of AMPT

§ Baryon entropy per baryon remains essentially constant during
     hadronic evolution, thus similar d/p ratio at TC and TK
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Chemical freeze-out in relativistic heavy ion collisions

Jun Xu & CMK, PLB 772, 290 (2017)

§ Both ratio of effective particle numbers and entropy per particle 
remain essentially constant from chemical to kinetic freeze-out.

14
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Deuteron production from an extended ART model 

§ Include deuteron production 
   (n+p → d+π) and annihilation 
   (d+π → n+p) as well as its 
   elastic scattering      
§ Similar emission time 
   distributions for protons 
   and deuterons in 
   coalescence model
§ Slightly different deuteron 
   emission time distribution in 
   transport and coalescence 
   models  
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Oh & Ko, PRC 76, 054910 (2007); Oh, Lin & Ko, PRC 80, 064902 (2009)
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Time evolution of proton and deuteron numbers

§ Both proton and deuteron numbers decrease only slightly 
   with time → early chemical equilibration
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17

Deuteron production in SMASH Oliinychekov, Pang, Elfner & Koch, 
PRC 99, 044907 (2019)  

§ Using a large 
     𝜋𝑁𝑁 ↔ 𝜋𝑑 cross
     section of about
     100 mb.

§ Deuteron number
     essentially remains 
     unchanged during 
     hadronic evolution  



Sun et al., arXiv:2207.12532 [nucl-th]

§ d/p and t/p ratios are similar in kinetic approach and coalescence model.  
§ Hadronic re-scatterings reduce the triton yields by about a factor of 2 as a 
   result of constant ⁄𝑡𝑝 𝑑! = ⁄1 2 3	and decreasing	 ⁄𝑑 𝑝	due to decay of    
   baryon resonances as the hadronic matter expands and cools.   18

Hadronic rescattering effects on light nuclei production
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Hypertriton production in coalescence model 
Zhang & Ko, PLB 780, 191 (2018)

§ Because of its large size, hypertriton yield changes little after long 
     free streaming of kinetic freeze out nucleons if produced from 
     their coalescence. 

𝐵" = 130	keV
𝑅" ≈ 10.6	fm
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System size dependence of light nuclei yield
Sun, Ko & Doenigus, PLB 792, 132 (2019)

§ Coalescence model gives a natural 
     explanation for the suppressed
     production of light nuclei in small
     collision systems.
§ Thermal model requires an
     unrealistically large canonical 
     correlation volume for charge 
     conservation. [Vovchenko, Doenigus
     & Stoecker, PLB 785, 171 (2018)]
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Yield ratio of 𝑵𝒕𝑵𝒑/𝑵𝒅𝟐  in Au+Au collisions at RHIC 
STAR Collaboration, arXiv:2209.08058 [nucl-ex]

§ Enhanced yield ratio of 𝑁𝑡𝑁𝑝/𝑁#! at 𝑠$$ ≈ 25	GeV in central Au+Au 
collisions, compared to non-central collisions.      

§ Is the enhancement due to neutron density fluctuation?  Both coalescence 
and statistical hadronizstion models predict neutron density fluctuations 
lead to  𝑡𝑝/𝑑! ≈ %

! & 1 + Δ𝜌' .  Sun et al., EPJA 57, 313 (2021)



22Sun, Ko & Lin, PRC 103, 064909 (2021); AMPT

Zhao, Shen, Ko, Liu & Song, PRC 102, 
044912 (2020).  IEBE+MUSIC+UrQMD

Liu, Zhang, He,  Sun, Yu, Luo, PLB  805, 
135452 (2020): JAM

Deng & Ma, PLB 808, 135668 (2020): UrQMD 

Beam-energy depdence of ⁄𝑵𝒕𝑵𝒑 𝑵𝒅𝟐   from theoretical models



Summary 

§ Coalescence model gives similar light nuclei yields in HIC as the thermal 
model if their binding energies are small compared to the temperature of 
the hadronic matter and their thermal wave lengths are much smaller than 
their sizes.  Both results are similar to that from transport model studies in 
which deuterons are assumed to remain bounded and can be produced and 
dissociated.

§ Hypertriton is expected to be produced significantly later after nucleons 
and lambda have frozen out because of its large size and small binding. 

§ Coalescence model can naturally explain the suppressed production of light 
nuclei in collisions of small systems.

§ Nucleon density fluctuations enhance the production of light nuclei,
     providing a possible explanation for the nonmonotonic collisions energy   
     dependence observed in the RHIC beam energy scan experiments.
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