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Path of Totality

Three Minutes of Twilight

On April 8,2024, Kent, Ohio will be in the path of totality for a solar eclipse where
the moon will completely blackout the sun for approximately three minutes at 3:14
p-m. There will not be another total solar eclipse in the U.S. until August 2044; and
in Northeast Ohio until September 2099.

Partial Eclipse: 1:59 p.m. to 4:29 p.m.
Total Eclipse: 3:14 p.m. to 3:17 p.m.

Tenskwatawa's prediction June 16, 1806

It has been called Tecumseh's Eclipse after the Shawnee chief, Tecumseh. He realized
that the only hope for the various tribes in east and central North America was to join.
He was assisted by his brother, Tenskwatawa, called The Prophet, who called for a
rejection of European influence and a return to traditional values. This tribal unity
threatened William Henry Harrison, the Territorial Governor of Indiana and future Sth
President of the United States. Harrison tried to discredit the Shawnee leader by
challenging Tenskwatawa to prove his powers. He wrote: "If he (Tenskwatawa) is really
a prophet, ask him to cause the Sun to stand still or the Moon to alter its course, the
rivers to cease to flow or the dead to rise from their graves."

Tenskwatawa declared that the Great Spirit was angry at Harrison and would give a
sign. "Fifty days from this day there will be no cloud in the sky. Yet, when the Sun has
reached its highest point, at that moment will the Great Spirit take it into her hand and
hide it from us. The darkness of night will thereupon cover us and the stars will shine
round about us. The birds will roost and the night creatures will awaken and stir." On
that day, there was an eclipse, and Harrison's attempt to divide the Shawnee people
backfired spectacularly. Then Tecumseh ordered the Great Spirit to release the sun.!"!



Example of versatile colliders and detectors

STAR major upgrades over the last twenty years to Detector primary functions DOE+(in-kind)  year
improve particle identification and vertex TPC+Trigger |5l <1 Tracking 1999-
reconstruction and is still evolving with an extensionto ~ BaelEMC Il <1 jets/y/n'/e .y
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https://en.wikipedia.org/wiki/Quark

Baryon Number (B) Carrier A

* Textbook picture of a proton
* Lightest baryon with strictly conserved baryon number
* Each valence quark carries 1/3 of baryon number
* Proton lifetime >1034 years
* Quarks are connected by gluons

* Alternative picture of a proton
* Proposed at the Dawn of QCD in 1970s
e AY-shaped gluon junction topology carries baryon number (B=1)
* The topology number is the strictly conserved number
* Quarks do not carry baryon number
* Valence quarks are connected to the end of the junction always

[1]: Artru, X.; String Model with Baryons: Topology, Classical Motion. Nucl. Phys. B 85, 442-460 (1975).
[2]: Rossi, G. C. & Veneziano, G. A; Possible Description of Baryon Dynamics in Dual and Gauge Theories. Nucl. Phys. B 123, 507-545 (1977)



Measurements of quark baryon number?

* Textbook picture of a proton
* Lightest baryon with strictly conserved baryon number
* Each valence quark carries 1/3 of baryon number
* Proton lifetime >103* years
* Quarks are connected by gluons

* Alternative picture of a proton
* Proposed at the Dawn of QCD in 1970s
e AY-shaped gluon junction topology carries baryon number (B=1)
* The topology number is the strictly conserved number
e Quarks do not carry baryon number
* Valence quarks are connected to the end of the junction always

* Neither of these postulations has been verified experimentally

1
3

[1]: Artru, X.; String Model with Baryons: Topology, Classical Motion. Nucl. Phys. B 85, 442-460 (1975).
[2]: Rossi, G. C. & Veneziano, G. A; Possible Description of Baryon Dynamics in Dual and Gauge Theories. Nucl. Phys. B 123, 507-545 (1977)



Model implementations of baryons at RHIC

* Many of the models used for
heavy-ion collisions at RHIC
(HUING, AMPT, UrQMD) have
Implemented a nonperturbative
baryon stopping mechanism
V. Topor Pop, et al, Phys. Rev. C 70, 064906 (2004)
Zi-Wei Lin, et al, Phys. Rev. C 72, 064901 (2005)

M. Bleicher, et al, J.Phys.G 25, 1859-1896 (1999)

* Baryon Stopping

* Theorized to be an effective mechanism of
stopping baryons in pp and AA

D. Kharzeev, Physics Letters B 378, 238-246 (1996)

 Specific rapidity dependence is
predicted:

dp ~=0.5
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Di-quark breaking (3 strings)

Di-quark cross section?

X-N Wang March 2002 Baryon Dynamics at RHIC

2003 RBRC Workshop on “Baryon Dynamics at RHIC”

D. Kharzeev, Physics Letters B 378, 238-246 (1996)
“Can gluons trace baryon number?”

1996 2024

“Science, however, is never
conducted as a popularity
contest...” --- Michio Kaku

BUT citations ARE
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Can gluons trace baryon number?

D. Kharzeev
Theory Division, CERN, CH-1211 Geneva, Switzerland
and Fakultdt fiir Physik, Universitit Bielefeld, D-33501 Bielefeld, Germany
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Abstract

QCD as a gauge non-Abelian theory imposes severe constraints on the structure of the baryon wave function. We
point out that, contrary to a widely accepted belief, the traces of baryon number in a high-energy process can reside in
a non-perturbative configuration of gluon fields, rather than in the valence quarks. We argue that this conjecture can be
tested experimentally, since it can lead to substantial baryon asymmetry in the central rapidity region of ultra-relativistic
nucleus-nucleus collisions.

In QCD, quarks carry colour, flavour, electric charge [ /. A 1
and isospin. It seems only natural to assume that they X ll’ €xp \zg j Agax™ )qm)J . (1)
also trace baryon number. However, this latter assump- X3 k

There is only one way to construct a gauge-invariant
state vector of a baryon from quarks and gluons

which is ignored in most of the naive quark model for- of gauge invariant operators representing a haryon in
mulations. This constraint turns out to be very severe; QCD. With properly optimised parameters

%n faflt, there is only_one way_to _construct a_gsauge- extensively in the first principle computation It is eVldent from t}
invariantstate vector of abarvon from guarks and glur

tice Monte Carlo attempting to determine |
ons [1] (note however that there is a large amount of mass. The purpose of this work is to stud

Dates: Jan 22 — 24, 2024

Location: Center for Frontiers in Nuclear Science
(CFNS), Stony Brook University

Format: In-person & zoom

Participation: Invited Talks + Open Mic Discussion

Registration Deadline: Jan 15th, 2024

No registration fee - Limited student support available

Scientific Motivation:

This workshop aims to address fundamental questions such as what carries the baryon
quantum number and how a baryon is stopped in high-energy collisions, which have profound
implications for understanding the baryon structure. It also challenges our current knowledge
of QCD and its non-perturbative aspects, such as baryon junctions and gluonic topology. The
workshop will explore the origin and transport of baryons in high-energy collisions, from the
AGS/SPS/RHIC/LHC to JLab Fn, HERA/EIC, and discuss the experimental and theoretical
challenges and opportunities in this field.

Key Topics:

* Baryon junctions and gluonic topology

 Baryon and charge stopping in heavy-ion collisions

* Baryon transport in photon-induced processes

* Baryon-meson-transition in backward u-channel reaction
* Models of baryon dynamics and baryon-rich matter

* Novel experimental methods at EIC

Keynote speaker: Gabriele Veneziano

Organizers:
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of the baryon number

arXiv:2205.05685

Three approaches toward tracking the origin

1. STAR Method: .
Charge (Q) stopping vs baryon (B) . B = &
stopping: i) | (-dAn
if valence quarks carry Q and B, KU A
. . . 962r40+ 962r4 96Ru 96Ru
Q=B at middle rapidity : .,
2. Kharzeev-STAR Method:
If gluon topology (J) carries B as one .
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UrQMD matches data on charge stopping better in peripheral; better on baryon stopping in central
overpredicts charge stopping in central; underpredicts baryon stopping in peripheral 9




of the baryon number

1. STAR Method:
Charge (Q) stopping vs baryon (B)
stopping:
if valence quarks carry Q and B,
Q=B at middle rapidity
B/Q=2

2. Kharzeev-STAR Method:
If gluon topology (J) carries B as one unit,
it should show scaling according to
Regge theory
(XB=O.61

3. Artru Method:
In y+Au collision, rapidity asymmetry can

reveal the origin
og(A+A)=0.61< ag(y+A)=1.1< ag(PYTHIA)

dp ~=0.5

Three approaches toward tracking the origin
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https://indico.cfnssbu.physics.sunysb.edu/event/113/contributions/742/

B=1,2,3 nuclear yield ratios

(a) Crossover (b) First-order

deuteron triton
e cg @n * Light nuclei production as a

Y probe of the QCD phase diagram
K.J. Sun, et al., PLB 781 (2018) 499

* Probing QCD critical fluctuations
from light nuclei production in
relativistic heavy-ion collisions

K.J. Sun, et al., PLB 774 (2017) 103

N(4§ ) xN(e)
N(#) X N(#e)

Op—d—t =

Fig. 1 (Color online) Density distribution of strongly interacting mat-
ter in a heavy ion collision after its expansion for the cases of crosso-  C.M. Ko, NST 34 (2023) 80
ver transition (panel a) and first-order chiral phase transition (panel

i ; : Na: N, v Y A
b). Also shown for illustration of the latter case are deuterons and tri- Opat = Ve 14(1+20)An

i i : ; N2 : A )2
tons produced from the density fluctuating hadronic matter and their Ny (1+aAn)
yield ratio O, 4, = NN, /Ng, which depends on the magnitude of
neutron density distribution as discussed in the text 12
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Spectra and two-particle ratios

STAR, Phys.Rev.Lett. 130 (2023) 202301
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Quantum Wavefunction overlap e
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Possible sign of Density Fluctuation

4o effect, BES-Il data x10 statistics

STAR, Phys.Rev.Lett. 130 (2023) 202301
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| B|=3 hypertriton lifetime

[ [ [ arXiv:2311.09877
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Search for heavy antimatter and baryon objects
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Observation of antimatter H4Lambda
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Charge Symmetry Breaking in B 4 hypernuclei

STAR, Phys. Lett. B 834 (2022) 137449
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T Discovery potential at EIC

Heavy-flavor states

http://belle. kek.jp/belle/talks/moriondQCD10/pakhlov.ppt

Many (>10) states poorly consistent with quark model

Heavy-flavor hypernuclei

o Predicted to exist (70's)
o Cannot be produced in pp, ep

collisions

State M (MeV) r(Mev) JPC Decay Modes Production Modes
L ete™ (ISR)
Y,(2175) 2175+ 38 58 +26 1 $f(980) 1/ — nY.(2175)
++ =)/, _
X(3872) 38714+ 0.6 <23 1+ /DD B — KX(3872), pp
X(3915) 3014 + 4 2B+9 02t wi/yY vy — X(3915)
Z(3930) 3029 + 5 20+10 2+ DD vy — Z(3940)
74 DD* (not DD o ‘
X(3940) 3042 + 9 37+17 0 ‘, ete™ — J/1X(3940)
or wl/)
Y (3940) 3043 + 17 87+34 77F wJ/¢ (not DD*) B — KY(3940)
Y (4008) 4008*52 2670 17 xt Y ete~(ISR)
X(4160) 4156 + 29 130143 o™t D*D* (not DD)  ete™ — J/1X(4160)
Y (4260) 4264 + 12 83+22 17~ xta—J/¢ ete~(ISR)
Y (4350) 4361 + 13 74418 17 ata= ! ete™(ISR)
X(4630) 463419, ot 1T ARAD ete™(ISR)
Y (4660) 4664 + 12 48+15 17 ata =’ ete™ (ISR)
Z(4050) 4051+%, 825 ? EXa B — KZ=(4050)
Z(4250) 4248118 (g Ars ] X B — KZ*(4250)
Z(4430) 433+ 5 4533 ? nEy! B — KZ*(4430)
Y,(10890) 10,890 + 3 5549 1= atn=7(1,2,35) ete” = Y,
observed last 6 years by B-factories

How about baryon states?
LBL Heavy-lon Tea Seminar

0 Cannot be detected in fixed target

experiment

o Only solution: EIC
o EIC enough energy for charm and

bottom hypernuclei

Vertex detector at Fragmentation
region

Displace vertex: 3cm

Physical Review Letters
moving physics forward
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Search for Stab
in Heavy-lon and EIC

- T~ Stable and existence due to Coulomb force
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He \ PYTHIA: D-/n~=5x10* p+p collisions
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at AGS and RHIC forward kinematics
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STAR@RHIC:
Estimate 1x10°/year in forward acceptance
But without vertex detector

Zhangbu Xu (BNL)
Cheng-Wei Lin, Yi Yang (NCKU)
DNP (2022), EMMI (2023)

CBM@FAIR high baryon, good vertex
LHCb@LHC forward with good vertex

EIC ion forward direction:
clean environment with good vertex
Nuclear cluster

e Charmed Mesic Nucleus , *He
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Search for Stable Charmed Mesic Nucleus , *He
at CBM e

] . . . Zhangbu Xu (BNL)
J. Steinheimer, A. Botvina, M. Bleicher, PRC 95 (2017) 014911 Cheng-Wei Lin, Yi Yang (NCKU)

D™

10" ENE g ] DNP (2022), EMMI (2023)
2 i1 -o-D 1 \ L/

10° F i & ia -AL?;ALiDcentral 1 gHe\ Sao_--"
2 F —==D |
5 —e—D . . . .
S0 { Charm Quark Oscillation with large mass difference
S
§ 10°} f:! “He (20% wavefunction overlaps)
"6 r ]
s <

0} | f 6 LI quarks W CHe

: L . U C
sk 1] ] > >
10 T —
3 4 5 6 7 8 9 B B

STAR@RHIC: Vs, [GeV] 7150

Estimate 1x105/year in forward acceptance y A

But without vertex detector d, S, b

CBM@FAIR high baryon, good vertex

LHCb@LHC forward with good vertex D- T

EIC ion forward direction: 12
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Zgg“ Projected Discovery of antimatter Helium-4 nucleus from STAR

§ | I 1 I I
How many possible antimatter 8 10 P o
nuclei can we discover? iy 1
Anti-hypertriton, anti-alpha; o'B 107" :
Anti-hyperH4? ? 1072 B
=18 do
Can we get to antimatter ¢He? —p
. \|—10 ¥
Unless technology and Physics o 10 ’
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Baryon Number

xzb: AAAS annual meeting 01/2011
Heaviest Antimatter Found; Made in U.S. Atom Smasher
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https://www.nationalgeographic.com/science/article/110222-heaviest-antimatter-particle-big-bang-gold-universe-science

ﬁm hypernuclei and antimatter from

correlations in the Vacuum |,
Fundamental Issues in the Physics of Elementary

Matter:
Cold Valleys and Fusion of Superheavy Nuclei -

Hypernuclei — Antinuclei — Correlations in the
Vacuum

Walter Greiner
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Hoyle Mechanism of creating heavier elements

a. He-4 = o particle

Q0
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b. Cluster model for Be-8 nucleus
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Otsuka et al., Nature Comm. (2022)

ON NUCLEAR REACTIONS OCCURRING IN VERY HOT STARS. 1. THE

SYNTHESIS OF ELEMENTS FROM CARBON TO NICKEL

F. HovLe*

MOoUNT WILSON AND PALOMAR OBSERVATORIES
CARNEGIE INSTITUTION OF WASHINGTON
CALIFORNIA INSTITUTE OF TECHNOLOGY

Received December 22, 1953

It is convenient to replace reaction (24) by

a + a = Bé?,

This is a permissible step, since the lifetime of the unstable Be® is appreciably longer than
the time required for a ‘‘nuclear” collision of two a-particles; that is, longer than the
a-particle radius divided by the relative velocity. The merit of reaction (27) is that the
number density #8 of Be? nuclei is given in terms of the number density #; of a-particles

by the equation of statistical equilibrium (Hoyle 1946),

log 78 =2 log ng—34.53—-glogT———T—, (28)

where the disintegration energy of Be® is taken as 0.092 mev, and T is in units of 10°° K.

0.464

Bed + a— C2 + 7. (27)

PHYSICAL REVIEW

VOLUME 92,

NUMBER 3 NOVEMBER 1, 1953

The 7.68-Mev State in C'?

D. N. F. DuxBAr,* R. E. Pixtey, W. A. WENZEL, AND W. WHALING
Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California

(Received July 21, 1953)

Magnetic analysis of the alpha-particle spectrum from N(d,a)C2 covering the excitation energy range
from 4.4 to 9.2 Mev in C2 shows a level at 7.68-0.03 Mev. At E4=620 kev, 01,,=90°, transitions to this
_ state are only 6 percent of those to the level at 4.43 Mev.

ALPETER! and Opic? have pointed out the im-
portance of the Bed(a,y)C®? reaction in hot stars
which have largely exhausted their central hydrogen.
Hoyle® explains the original formation of elements
heavier than helium by this process and concludes from
the observed cosmic abundance ratios of O¢:C:He!

that this reaction should have a resonance at 0.31 Mev
or at 7.68 Mev in C®. '

An early measurement of the range of the alpha
particles from N*(d,a)C? indicated a level in C? at
7.62 Mev.* However, a recent magnetic analysis of
this reaction failed to detect a transition to any level

1 & Cone O a8 e R e dEY dlva Viaadl dliaces: asas
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How do Hoyle States appear at RHIC?

In coalescence picture
* Prepare the alpha (anti-alpha)
at the early stage (hot and
dense)

* Those alpha clusters scatter
around, and form heavier
8Be (0.1MeV) and 12C*
(0.3MeV) because those
excited levels are really close
to the free alpha energy level
OROp (very small 0p and very
large OR)
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In thermodynamics picture

* Prepare the alpha (anti-
alpha) at the early stage
(hot and dense)

* The alpha clusters re-
thermalized at later stage
with a large fugacity (similar
to charm thermalization)
and therefore form Prepare
the alpha (anti-alpha)
at the early stage (hot and
dense) at much later time
and lower density and low
temperature



Another way of picturing this

No penalty of wavefunction overlap Benefit of alpha cluster formation at
due to late-stage alpha coalescence early stage (two-stage formation)
(a)  Crossover (b) First-order
2 3 én
Nl >< N R _I_ I" @r
== po X 34
2 2
o . _ N(®)xN@)
P4t T N(#8) X N(#8)
CO a | escence wa VEf un Ct | on Fig. 1 (Color online) Density distribution of strongly interacting mat-
ter in a heavy ion collision after its expansion for the cases of crosso-
ver transition (panel a) and first-order chiral phase transition (panel
ove rl d p b etwee n nuc | €eus b). Also shown for illustration of the latter case are deuterons and tri-
an d nNuc I eons tons produced from the density fluctuating hadronic matter and their

yield ratio O, 4, = NN, /Ng, which depends on the magnitude of
neutron density distribution as discussed in the text

A=8 formation to 4+4 formation (A~=5) 29
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3Be and “C enhanced yields
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Could be between |A|=5 and |A|=8 extrapolation
Even better at CBM due to slow expansion and redistribution of alpha clusters
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Conclusions

* Discovery of the heaviest antimatter * Baryon number is a strictly conserved

nuclear cluster (hyperhydrogen 4) guantum number,
keeps the Universe as is

e Continue to improve our measurements
on hypernuclear lifetime and binding * We did not know what its carrier is;
energy (CSB) It had not been experimentally verified

one way or the other until now;

e Use nuclear yields to study production
mechanism, quantum wavefunction * Explore other signatures
overlap: thermal vs coalescence model

* Use nuclear yield ratios as a sensitive * Charmed hypernuclei (EIC, LHC, CBM)

probe of nucleon density fluctuation

e Hoyle States (STAR FXT, CBM) and
antimatter $Be (LHC?)




