Study the QCD Phase Structure in High-Energy Nuclear Collisions

Nu Xu

(GSI, LBNL)

Outline

1) Introduction

2) Selected Recent Results

- Collectivity
- Criticality
- Hyper-nuclei Production

3) Future Physics Programs

Strong Interaction and QCD Phase Structure

2004 asymptotic freedom (QCD)

2013 Higgs

- Discovery of the Higgs boson
 - \checkmark Origin of mass
 - ✓ Standard Model → Theory
- QCD Phase Structure (?)
 - Confinement
 - SCB: mass of hadrons and the visible world
 - QCD phase boundary and critical point …

Emergent Properties of QCD

Phase Structure of Strong Interactions

Phase Diagram: For given degrees of freedom, how matter (re)organizes itself under external conditions

High-Energy Nuclear Collisions and QCD Phase Diagram

1) RHIC BES: \rightarrow search for 1st-order phase transition and **QCD critical point**; 2) Baryon interactions (*e.g.* N - N, Y - N) \rightarrow inner structure of compact stars

LGT Calculation: QCD Phase Structure

1) QCD transition temperature: $T_{PC} = 156.5 \pm 1.5 \text{ MeV}$							
2) Chiral crossover line							
$T_{PC}(\mu_B) = T_{PC}^0 \left[1 - \kappa_2 \left(\frac{\mu_B}{T_{PC}^0} \right)^2 - \kappa_4 \left(\frac{\mu_B}{T_{PC}^0} \right)^4 \right]$							
$\kappa_2 = 0.012(4), \ \kappa_4 = 0.00(4)$							
3) Chiral transition temperature: $T_{C} = 132^{+3}_{-6} \text{ MeV}$							
4) QCD critical end point: $T^{CEP} < T_C$, $(\mu_B^{CEP} \gtrsim 3T_C)$							
HotQCD: Phys.Lett. <u>B795</u> , 15(2019); Phys. Rev. Lett. <u>123</u> , 062002(2019)							

High-Energy Nuclear Collisions and QCD Phase Diagram

At LHC and RHIC top energy: > Jet quenching; > Collectivity data; \triangleright Net-p C_6/C_2 1) At $\mu_B \sim 0$, smooth crossover. $\mu_B/T \leq 2$ (LGT); 2) CP at $\mu_B/T > 3$

- 1) STAR: Phys.Rev. <u>C79</u>, 034909(2009);
- P. Braun-Munzinger *et al.* Nature, <u>561</u>, 321(2018);
- 3) A. Bzdak *et al.* Phys. Rep., <u>853</u>, 1(2020);
- 4) ALICE: 2211.04384 (review)

Nu Xu

High-Energy Nuclear Collisions and QCD Phase Diagram

1500

ALICE DETECTOR SYSTEM

HADES DETECTOR SYSTEM

 $E_{K} = 1.58/1.23 \text{ AGeV Ag+Ag}$

- \succ E_K = 1.23 AGeV Au+Au
- $\gg \mu_R \rightarrow 800 \text{ MeV}$

(MeV)

- $E_{\kappa} = 4.5 \text{ GeV p+p}$
- \succ E_K = 3.5 GeV p+Nb
- $E_{K} = 1.7 \text{ GeV } \pi + W / + C / + PE$

Properties of nuclear matter at high baryon potential and nuclear density:

- 1) Correlations and fluctuations;
- 2) Strangeness production;
- 3) Di-lepton signals from various sources

Nuclear Collisions and QCD Phase Diagram

Quark-Gluon Plasma (QGP)

QCD Phase Diagram

Particle Identification and Acceptance

	Net-charge	Net-Kaon	Net-proton	
Kinetic cuts	$0.2 < p_T < 2.0 \text{ GeV/c}, \eta < 0.5$	$0.2 < p_T < 1.6 \text{ GeV/c}, y_K < 0.5$	$0.2 < p_T < 1.6 \text{ GeV/c}, y_p < 0.5$	
Particle identifications	Reject spallation p at $p_T < 2.0 \text{ GeV/c}$	TPC: $0.2 < p_T < 0.4 \text{ GeV/c}$ TPC/TOF: $0.4 < p_T < 1.6 \text{ GeV/c}$	TPC: $0.4 < p_T < 0.8 \text{ GeV/c}$ TPC/TOF: $0.8 < p_T < 2.0 \text{ GeV/c}$	
Efficiency corrections		TPC: $\varepsilon_{TPC} \sim 0.8$; TPC+TOF: ε_{T}	$_{PC+TOF} \sim 0.5$	
Centrality Definitions	Un-corrected charge particles $0.5 < \eta < 1.0$	Un-corrected charge particles and reject Kaons, $ \eta < 1.0$	Un-corrected charge particles and reject p and anti-p, $ \eta < 1.0$	

STAR Fixed Target Setup

CBM participates in RHIC BES-II in 2019 – 2021:

- > Complementary to CBM program: $\sqrt{s_{NN}} = 3 7.2 \text{ GeV} (760 \ge \mu_B \ge 420 \text{ MeV})$
- Strange-hadron, hyper-nuclei and fluctuation at the high baryon density region

STAR BES-I and BES-II Data Sets

Au+Au Collisions at RHIC											
Collider Runs						Fixed-Target Runs					
	√ S_{NN} (GeV)	#Events	μ_B	Ybeam	run		√ S _{NN} (GeV)	#Events	μ_B	Y _{beam}	run
1	200	380 M	25 MeV	5.3	Run-10, 19	1	13.7 (100)	50 M	280 MeV	-2.69	Run-21
2	62.4	46 M	75 MeV		Run-10	2	11.5 (70)	50 M	320 MeV	-2.51	Run-21
3	54.4	1200 M	85 MeV		Run-17	3	9.2 (44.5)	50 M	370 MeV	-2.28	Run-21
4	39	86 M	112 MeV		Run-10	4	7.7 (31.2)	260 M	420 MeV	-2.1	Run-18, 19, 20
5	27	585 M	156 MeV	3.36	Run-11, 18	5	7.2 (26.5)	470 M	440 MeV	-2.02	Run-18, 20
6	19.6	595 M	206 MeV	3.1	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	1.87	Run-20
7	17.3	256 M	230 MeV		Run-21	7	5.2 (13.5)	100 M	540 MeV	-1.68	Run-20
8	14.6	340 M	262 MeV		Run-14, 19	8	4.5 (9.8)	110 M	590 MeV	-1.52	Run-20
9	11.5	57 M	316 MeV		Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	-1.37	Run-20
10	9.2	160 M	372 MeV		Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	-1.2	Run-20
11	7.7	104 M	420 MeV		Run-21	11	3.2 (4.59)	200 M	699 MeV	-1.13	Run-19
						12	3.0 (3.85)	260 + 2000 M	760 MeV	-1.05	Run-18, 21

Most precise data to map the QCD phase diagram $3 < \sqrt{s_{NN}} < 200 \text{ GeV}; 760 > \mu_B > 25 \text{ MeV}$

Outline

1) Introduction

2) Selected Recent Results

- Collectivity
- Criticality
- Hyper-nuclei Production

3) Future Physics Programs

The emergent properties of QCD matter

Collectivity

$$\partial_{\mu} [(\varepsilon + p)u^{\mu} u^{\nu} - pg^{\mu\nu}] = 0$$

$$\partial_{\mu} [s u^{\mu}] = 0$$

$$\frac{d^2 N}{p_T dp_T d\varphi} = \frac{1}{2\pi} \frac{dN}{p_T dp_T} \left\{ 1 + \sum_{n=1}^{\infty} 2v_n (p_T) \cos[n(\varphi - \Psi_R)] \right\}$$

- v_1 Directed flow;
- v_2 Elliptic flow; $-v_3$ Triangle flow

Anisotropy Parameter v₂

Sensitive to initial/final conditions, EoS and degrees of freedom

Partonic Collectivity at RHIC

STAR: PRL116, 62301(2016)

Heavy Flavor Hadron D⁰ Collectivity at HRIC

1) First application of MAPS technology in high energy collisions, excellent position resolution;

- "These results suggest that charm quarks have achieved local thermal equilibrium with the medium created in such (200GeV Au+Au) collisions"
- Hadronization via quark coalescence process

STAR: PRL113, 142301(14); PRC99, 034908(19); PRL118, 212301(17); PRL123, 162301(19); PRL124, 172301(20)

"EMMI Physics Day 2023", GSI, July 17, 2023

D⁰ Partonic Energy Loss and Collectivity at LHC

> D⁰ strong suppress in R_{AA} and collectivity v_2 are evident at LHC;

Calculations: Charm-transport in hydrodynamically expanding QGP

Equation of State for Strong Interaction

Strongly-Interacting Low-Viscosity Matter

"EMMI Physics Day 2023", GSI, July 17, 2023

Disappearance of Partonic Collectivity

> At 3 GeV, NCQ scaling is absent ;

Transport model calculations, with baryonic mean field, reproduce both v₁ and v₂ results ;

> hadronic interactions dominant!

STAR: PLB**827**, 137003(2022)

The emergent properties of QCD matter

Criticality

Conserved Quantities (B, Q, S)

- 1) In strong interactions, baryons (B), charges (Q) and strangeness (S) are conserved;
- Higher order moments/cumulants describe the shape of distributions and quantify fluctuations. They are sensitive to the correlation length ξ, phase structure;
- 3) Direct connection to theoretical calculations of susceptibilities.

Measured multiplicity N,
$$\langle \delta N \rangle = N - \langle N \rangle$$

mean: $M = \langle N \rangle = C_1$
variance: $\sigma^2 = \langle (\delta N)^2 \rangle = C_2$
skewness: $S = \langle (\delta N)^3 \rangle / \sigma^3 = C_3 / C_2^{3/2}$
kurtosis: $\kappa = \langle (\delta N)^4 \rangle / \sigma^3 - 3 = C_4 / C_2^2$
Moments, cumulants and susceptibilities:
 2^{nd} order: $\sigma^2 / M \equiv C_2 / C_1 = \chi_2 / \chi_1$
 3^{rd} order: $S\sigma \equiv C_3 / C_2 = \chi_3 / \chi_2$
 4^{th} order: $\kappa \sigma^2 \equiv C_4 / C_2 = \chi_4 / \chi_2$
INT 2008-2b : The QCD Critical Point

Expectations for Models

 Characteristic "Oscillating pattern" is expected for the QCD critical point but the exact shape depends on the location of freeze-out with respect to the location of CP
 Critical Region (CR)

- M. Stephanov, PRL107, 052301(2011) - V. Skokov, Quark Matter 2012
- J.W. Chen, J. Deng, H. Kohyyama, Phys. Rev. <u>D93</u> (2016) 034037

Event-by-Event Net-Proton Distributions (raw)

Nu Xu

"EMMI Physics Day 2023", GSI, July 17, 2023

"Nonmonotonic Energy Dependence of Net-Proton Number"

1) HRG and transport model predicted monotonical energy dependence: AMPT, JAM, UrQMD. Suppression at low energy due to conservation;

2) The 3rd and 4th orders: **deviate from the Poisson limit** in the most central collisions!

Net-p $\kappa \sigma^2$ Energy Dependence

Thermalization in Heavy-Ion Collisions

S. Gupta et al. Phys. Lett. B829, (2022) 137021

Limits of thermalization in relativistic heavy ion collisions Sourendu Gupta^a, Debasish Mallick^{b,c}, Dipak Kumar Mishra^d, Bedangadas Mohanty^{b,c,*}, Nu Xu^e

 Test of the thermal model with high moments data: 4TH order;
 Below 39 GeV, data is not consistent with equilibrium.

Strangeness and Hyper-Nuclei

Λ-N Interaction inside Compact Stars

Y-N interaction: key to understand the inner structure of compact stars

Hyper-Nuclei Lifetime and Yields

Precision results on lifetime; ALICE: 2209.07360; STAR: PRL<u>128</u> 202301(2022)
 Abundant hyper-nuclei at the high baryon density region;
 Coalescence calculations seem work for hyper-nuclei yields

Collectivity of Hyper-Nuclei

➤ Coalescence: the dominant procedure for hyper nuclei production;
 ➤ Hyper nuclei collectivity (e.g. v₁ and v₂) → Y-N and Y-Y interactions under finite pressure gradient;

> **Questions:** Connection to the EOS of compact stars? Effect of isospin?

Outline

1) Introduction

2) Selected Recent Results

- Collectivity
- Criticality
- > Hyper-nuclei Production

3) Future Physics Programs

Future High Rates Experiments

ALICE3: $\mu_B \sim 0$ Properties of QGP!

- CBM: Unprecedented rate capability and µ_B ~ 800 MeV
- 1) High order baryon fluctuation and correlation;
- 3D di-lepton spectra (collision centrality, pair mass and p_T);

 Hyper-nuclei production and Y-N interactions

ALICE3

https://cds.cern.ch/record/2803563/files/LHCC-I-038.pdf

ALICE3: Low Mass, Large Rapidity Coverage

Key Physics Measurements:1) Heavy flavor: Medium effects and hadronization;

State-of-the-art detector! Great potentials for physics!

A dream experiment!

cumulants, ...

CBM Experiment at FAIR

CBM Experiment at FAIR

- FAIR: One of the brightest accelerator complexes
- Precision measurements at high baryon density region:
 (i) Dileptons (*e*, μ);
 (ii) High order correlations;
 (iii) Flavor productions (*s*, *c*) and hyper-nuclei

Beam on target in 2028

Projects and Timelines

Emergent Properties of QCD: Confinement & Mass of VM

"EMMI Physics Day 2023", GSI, July 17, 2023

Future Physics Programs

Acknowledgements:

EMMI

P. Braun-Munzinger, X. Dong, *C. Fu*, S. Esumi, X.H. He, *C.L. Hu*, V. Koch, *H. Liu*, XF. Luo, *D. Mallick, K. Mi*, B. Mohanty, T. Nonaka, A. Pandav, K. Redlich, A. Rustamov, S.S. Shi, J. Stachel, M. Stephanov, J. Stroth, K.J. Sun, V. Vovchenko, *Y. Xu, D.W. Zhang*, Y.P. Zhang, Y.J. Zhou // BLUE: Theory // RED: Experiment // GREEN: student

Alexander von Humboldt Foundation

GSI Helmholtzzentrum für Schwerionenforschung GmbH

