

Al

Proton -> Neutron

Nuclear gamma-rays and Cosmic Nucleosynthesis

Roland Diehl

Technical University München and MPE and Origins Cluster emeritus Garching

Contents:

- 1. Science goals of γ-ray observations
- 2. Supernova explosions
- 3. Galactic-scale nucleosynthesis

with work from (a.o.) and Martin Krause, Karsten Kretschmer, Moritz Pleintinger, Thomas Siegert, Rasmus Voss, Wei Wang, Christoph Weinberger

2

ł

4.000

caesium

potassiu

Rb noidum

Ne neon

20. Ter

Ar argon

> EUROPEAN COOPERATION IN SCIENCE & TECHNOLOGY Figure: ChETEC 2021

Cosmic nucleosynthesis

Big-bang nucleosynthesis	nised gas	1 Н Hydrogen	² He Helium	³ Li Lithuim
. ne	utral H			
• Stellar-interior nucleosynthesis	ionized gas			
first (hydrostatic) → first new nuclei ejected first compact stars	/star-enriched gas			iRBs V types
new nuclei from binaries	ritty of sources		p	<mark>NS</mark> Ms, G exotic SI
(explosive)	new nuclei		SNe	u? rare/
(di his	fferent enrichment stories)			o,Sr?Aı ı,Au,U
 High-energy collisions (spallatic 	lar system isolates			Xe,Rt Sr, Sn
No. Mig Application All SI P S Cl. Ar 13 80 12 12 13 M 15 17 12 18 <t< th=""><th>cleosynthesis</th><th></th><th></th><th></th></t<>	cleosynthesis			

Cosmic nucleosynthesis

in all cases:

rearrangement of bound nucleons (p,n) in nuclei by nuclear reactions towards tighter binding 3

Nuclear reactions in cosmic environments

major challenge:

- 🖈 plasma in the Universe is very different from the conditions in terrestrial laboratory experiments
- 🛠 quantum tunnelling dominates in cosmic-environment

Density

Cosmic nucleosynthesis sources

 Nuclear fusion reactions power all stars

 Many stars explode as a supernova at the end of their evolution

- Some binary systems including white dwarf stellar remnants explode as a supernova
- Some binary systems including neutron stars eventually merge to form a black hole

The composition of cosmic matter evolves over time

... a coarse picture of cosmic nucleosynthesis.

On-going Enrichments from Nucleosynthesis Sources

The Messages from Cosmic Elemental Abundances

These signatures are a result from the characteristic physical processes within...... atomic nuclei(which of these can be produced more-easily/more abundantly?)... cosmic sources(which nuclear-fusion environments occur more often/abundantly?)

Decomposing abundances towards "processes"

neutron capture physics may be the easier problem: $_{\text{basic physics and cosmic extremes}}$ \rightarrow use n capt / β decay & stellar evolution to predict s-process parts

 \rightarrow subtract from observed abundances to study the r-process parts

Cosmic origins of the variety of nuclides

Associating different "processes" with nuclide groups – what we teach...

and know it to be superficial (or even wrong)

Understanding cosmic nucleosynthesis sources

- How much matter is in winds?
- How are fusion products mixed?
- What is the composition of remnant star?
- Which stars explode as a supernova?
 Which parts of collapsing star ejected?

- Which white dwarfs explode?
- How is the explosion triggered?
- Which burnings can occur?
- Which compact stars may merge, when?
- How is the black hole formed?
- Which materials may escape?

Modeling Compositional Evolution

see, e.g., Diehl& Prantzos, NuclPhys.Hndbk 2023

☆ Changes in the forms of cosmic matter:

stars and gas flows:

 $m = m_{\rm gas} + m_{\rm stars} + m_{\rm infall} + m_{\rm outflow}$

$$\frac{dm_G}{dt} = -\Psi + E + [f - o]$$

 $\Psi(t)$ is the Star Formation Rate (SFR) and E(t) the *Rate of mass ejection* **(SFR)** gas which is ejected from stars: **when?**

$$E(t) = \int_{M_t}^{M_U} (M - C_M) \, \Psi(t - \tau_M) \, \Phi(M) \, dM$$

rewly-contributed ashes from nucleosynthesis: what?

The mass of element/isotope *i* in the gas is $m_i = m_G X_i$

$$\frac{d(m_G X_i)}{dt} = -\Psi X_i + E_i + [f X_{i,f} - o X_{i,o}]$$
$$E_i(t) = \int_{M_t}^{M_U} Y_i(M) \Psi(t - \tau_M) \Phi(M) dM$$

(ngredients:

Sources: How fast do they evolve to return (new) gas?

the star of mass M, created at the time $t - \tau_M$, dies at time t

Sources: How much of species i do they eject (and/or bury)?

 $Y_i(M)$ the mass ejected in the form of that element by the star of mass M

… (locations and environments of star formation, gas flows, …)

Chemical Evolution: ...there are issues ...

☆ model description fails for several elements

- even for elements from same source type...
- even using (unrealistic?) models/parameters
- ☆ inconsistencies with modeled vs observed nucleosynthesis event rates
 - ~350 radio+X SNR (~10000y) vs. ccSN rate 1/70y

SNII+HN+SNIa(Z

(k): Best estimate, this pape (i): Combination of (f - i), this pape (i): Rest of Local Group

(h). Andromeda (g): Milky Way neutrinos (f): Milky Way optical (e): Combination of (a-d)

Kobayashi+ 2020

Rozwadowska+ 2021

Different Complementing Observing Methods

Astronomical Messengers

Gamma-ray lines from cosmic radioactivity

Radioactive trace isotopes are by-products of nucleosynthesis reactions Released into circum-source ISM, we can observe gamma-ray afterglows:

Isotope	Mean Decay Time	Decay Chain	γ -Ray Energy [keV]	Detected Source	Source Type		
⁷ Be	77 d	$^{7}\text{Be} \rightarrow ^{7}\text{Li}^{*}$	478	(none)	Novae		
⁵⁶ Ni	8.8 d; 111 d	⁵⁶ Ni → ⁵⁶ Co* → ⁵⁶ Fe*+e ⁺	158, 812; 847, 1238	SN2014J; SN1987A, SN1991T(?)	Supernovae		
⁵⁷ Ni	390 d	⁵⁷ Co→ ⁵⁷ Fe*	122	SN1987A	Supernovae		
²² Na	3.8 y	²² Na → ²² Ne* + e*	1275	(none)	Novae		
⁴⁴ Ti	85 y	⁴⁴ Ti→ ⁴⁴ Sc*→ ⁴⁴ Ca*+e ⁺	78, 68; 1157	SNR Cas A	Supernovae		
^{229/230} Th	~1.0 10⁵ y	^{229/230} Th →·····→ ²⁰⁶ Pb	352 6092615	(none)	Neutron Star Mergers, SNe		
¹²⁶ Sn	3.3 10 ⁵ y	¹²⁶ Sn → ¹²⁶ Sb*→ ¹²⁶ Te	666; 695; 87; 64	(none)	Neutron Star Mergers, SNe		
²⁶ AI	1.04 10 ⁶ y	$^{26}\text{AI} \rightarrow ^{26}\text{Mg}^* + e^*$	1809	Massive-Star Groups Cyg, Ori	Stars, Novae Supernovae		
⁶⁰ Fe	3.5 10 ⁶ y	⁶⁰ Fe → ⁶⁰ Co* → ⁶⁰ Ni*	59, 1173, 1332	Galaxy (?)	Supernovae, Stars		
e*	10 ⁵ 10 ⁷ y	$e^++e^- \rightarrow Ps \rightarrow \gamma\gamma$	511, <511	Galactic Bulge, Disk	Supernovae, Novae, Pulsars, Microquasars		
Only the most-plausible candidates per source type are listed (abundance; decay time (weeks<τ<10 ⁸ y) long enough to survive ejection/not too long to be bright) 16 16 16 16 16 16 16 16 16 16 10 10 10 10 10 10 10 10 10 10 10 10 10							

GSI Colloquium, 13 Jun 2023

(12C, 16O, ...) (from CRS)

Current Nuclear Gamma-Ray Line Telescopes

INTEGRAL

2002-(2023+..2029)

ESA

high E resolution Ge detectors

15-8000 keV

NuSTAR (only <80 keV!)

2012-(2022+) ... NASA hard X ray imaging <80 keV

Fig. 1. NuSTAR telescopes in deployed configuration

Imaging principles for a MeV-range y-ray telescope

Compton Telescopes and Coded-Mask Telescopes

Achievable Sensitivity: ~10⁻⁵ ph cm⁻² s⁻¹, Angular Resolution \geq deg GSI Colloquium, 13 Jun 2023

INTEGRAL Cosmic Photon Measurements: The SPI Ge γ-Spectrometer

Coded-Mask Telescope Energy Range 15-8000 keV Energy Resolution ~2.2 keV @ 662 keV Spatial Precision 2.6° / ~2 arcmin Field-of-View 16x16°

INTEGRAL: Dominance of instrumental background

SPI Ge detector spectra

GSI Colloquium, 13 Jun 2023

Discriminating Background and Sky Signals in SPI Data

• Tracking the relative count rate ratios among detectors © characteristic signatures from celestial sources withcoded mask, and from background events

GSI Colloquium, 13 Jun 2023

Gamma ray spectroscopy with SPI

Lessons from radioactive isotopes

☆Trace the flows of cosmic matter

☆Understand the sources of new nuclei

⁵⁶Ni radioactivity $\rightarrow \gamma$ -Rays, e⁺ \rightarrow leakage/deposit evolution

SN2014J light evolution in the 847 keV ⁵⁶Co line

SN2014J data Jan – Jun 2014: ⁵⁶Co lines

- ☆ Split into 4 time bins
- Coarse & fine spectral binning
- → Observe a structured and evolving spectrum
- expected: gradual appearance of broadened ⁵⁶Co lines
 ^{CP} Diehl et al., A&A (2015)
- note: normally, we do not see such fluctuations in 'empty-source' spectra!

SNIa and SN2014J: Early ⁵⁶Ni (τ~8.8d)

Spectra from the SN at ~20 days after explosion

Clear detections of the two strongest lines expected from ⁵⁶Ni (should be embedded!)

⁵⁶Ni mass estimate (backscaled to explosion): ~0.06 M_☉ (~10%)

i.e.: not the single-degenerate M_{chandrasekhar} model, to observer

but rather a 'double detonation, i.e.

either 2 WDs (double-degenerate) or a He accretor (He star companion)

\rightarrow SN Ia are a variety

GSI Colloquium, 13 Jun 2023

Taubenberger 2017

Gravitational Collapse and SN

SN1987A

• Witnessing the final core collapse of a massive star of mass 22 M_{\odot} in Feb 1987

GSI Colloquium, 13 Jun 2023

"Explodability" of core collapses

- successful explosion (and mass ejection) depends on subtle balances of internal processes and their kinematic implications
 - turbulence from gravitational accretion and neutrino energy deposits enhanced by instabilities in flows (Rayleigh-Taylor etc)

NIC-XVI (21-25 Sept 2021)

Carla Frohlich (NCSU)

Complexities of Gravitational Collapse and SN

- ☆ Basic processes are more complex than the 'standard model' says:
 - pre-SN structure is complex
 - collapse, ignition, and outflows all occur simultaneously
 - collapse and accretion continue long after ignition of nuclear burning
 - Iate accretion and fallback make explosion fail for more massive stars

UNLEARN THE ONION Observations tell us that the explosion, and the ejected elements, are asymmetric. Yet we rely on spherically symmetric models to understand supernova nucleosynthesis.

O+Ne+Mg: 38

time: 90

This colors our discussion, for example the notion that the matter created closest to the neutron star is most sensitive to the "mass cut".

Kharoussi+ 2020 54 v_{e} \bar{v}_{e} 52 Log (luminosity [erg s⁻¹]) 50 GŴ EM 48 pre-SN \bar{v}_{o} 46 **SBO** 44 plateau 42 40 progenitor 38 2 9 6 3 0 -2 0 6 8 4 Log (time relative to bounce [s])

Raph Hix 2016

Nucleosynthesis in cc-SN : **Density/Temperature Regimes**

"For each region only certain reactions affect the yields of ⁴⁴Ti" GSI Colloquium, 13 Jun 2023

⁴⁴Ti from SN1987A

⁴⁴Ti radioactivity in Cas A: Locating the inner Ejecta

NuSTAR Imaging in hard X-rays (3-79 keV; ⁴⁴Ti lines at 68,78 keV) →

first mapping of radioactivity in a SNR

- Both ⁴⁴Ti lines detected clearly
- redshift ~0.5 keV
 → 2000 km/s asymmetry
- ⁴⁴Ti flux consistent with earlier measurements
- Doppler broadening: (5350 \pm 1610) km s⁻¹
- Image differs from Fe!!

^C⁴⁴Ti → TRUE locations of ejecta from the inner supernova
^C² Fe-line X-rays are biased from ionization of shocked plasma

NuSTAR update: 44Ti in Cas A

☆ Imaging resolution allows to spatially resolve Cas A's ⁴⁴Ti:

2.4 Msec NuSTAR campaign

Grefenstette et al. 2017

NuSTAR details c^{= 44}Ti in Cas A

GSI Colloquium, 13 Jun 2023

⁴⁴Ti Cas A: INTEGRAL/SPI confirmations of bulk redshift

GSI Colloquium, 13 Jun 2023

Lessons from radioactive isotopes

☆Trace the flows of cosmic matter

☆Understand the sources of new nuclei

²⁶Al γ -rays from the Galaxy

Massive stars and ²⁶Al radioactivity: co-spatial distribution

GSI Colloquium, 13 Jun 2023

Roland Diehl

Radioactivities from massive stars: ⁶⁰Fe, ²⁶Al

→ Messengers from Massive-Star Interiors!

... complementing neutrinos and asteroseismology!

Processes:

- ☆ Hydrostatic fusion
- ☆ WR wind release
- ☆ Late Shell burning
- ★ Explosive fusion
- ☆ Explosive release

The Al Isotope Ratio ²⁶Al/²⁷Al

²⁷Al is enriched with Galactic Evolution, i.e. ~time

²⁶Al decays, so from current/recent nucleosynthesis only

Early solar system meteorites measure ESS environment 4.6Gy ago (\rightarrow ²⁶Al enriched?) Pre-solar grains measure nucleosynthesis in dust-producing sources (\rightarrow much larger)

²⁶Al γ -rays and the galaxy-wide massive star census

Recently: Improved Sensitivity

Using also multiple-detector events in SPI

building a model for instrumental background in detail:

Diffuse radioactivity throughout the Galaxy

Diffuse radioactivity throughout the Galaxy

✓ PSYCO modeling: (30000 sample optimisation)
 → best: 4-arm spiral 700 pc, LC06 yields, SN explosions up to 25 M_☉

- ^G SPI observation: → full sky flux (1.84 ±0.03) 10⁻³ ph cm⁻² s⁻¹
- ^C flux from model-predicted ²⁶Al: → (0.5..13) 10⁻⁴ ph cm⁻² s⁻¹ → too low
- Best-fit details (yield, explodability) depend on superbubble modelling (here: sphere only)

Massive Star Groups in our Galaxy: ²⁶Al γ-rays

How massive-star ejecta are spread out...

200 100 [km s⁻¹] 0 01-0 000-200 Superbubbles extended away from massive-star groups -300 40 20 0 -20 -40 Galactic longitude [deg] **OB** association \bigcirc HI shell Krause & Diehl, ApJ (2014) X-ray bubble Blow-out ²⁶Al ejecta Galactic Galactic centre centre Observer Plane Galactic Galactic rotation rotation Illustration by M. Pleintinger (2020) Observer

Orion-Eridanus: A superbubble blown by stars & supernovae

ISM is driven by stars and supernovae \rightarrow Ejecta commonly in (super-)bubbles

Flux [10⁻¹

GSI Colloquium, 13 Jun 2023

62 Krause+ 2013ff

Roland Dieh

Stellar feedback in the nearerst massive-star region (Sco-Cen)

The stellar population covers a wide age range

no clear coeval subgroups, SF ongoing for ~15+ My; distance~140pc)

The interstellar medium holds a network of cavities

ISM dynamics is not easy to unravel

²⁶Al (t~1My) covers a large solid angle; can we measure the flow?

\rightarrow "surround & squish"

rather than "triggered" star formation

Krause+2018

GSI Colloquium, 13 Jun 2023

Roland Dieh

Diffuse gamma-ray emission from ⁶⁰Fe in the Galaxy

²⁶Al and ⁶⁰Fe analysis with same INTEGRAL dataset (15+ years) and models

⁶⁰Fe and ²⁴⁴Pu from nearby nucleosynthesis found on Earth

Knie+ 2004, Fimiani+ 2016, Ludwig+ 2016, Koll+ 2019,

+ lunar material probes; + antarctic snow

Wallner+ 2015, 2016, 2021 B ²⁴⁴Pu τ~80 My Pu (at cm⁻² yr⁻¹ 0 ⋝ FeMn Crust-1 ^γ 50 FeMn Crust-2 FeMn Crust-3 at incoporation rates **s** 40 ⁶⁰Fe **Ē** 35 sediment deposition 20 10 10 3 τ~3.8 My Crust -eMn (9 10 2 3 6 8 time period (Ma) peak of radioactivity influx

≈3 & 6-8 My ago!

What are its sources?

How did these traces of nucleosynthesis get here?

⁶⁰Fe on Earth from recent nearby supernovae?

The Sun is (now) located inside a hot cavity (the "Local Bubble") SN explosions within LB \rightarrow ejecta flows reach the Solar System

ake Bubble

ISM dynamics and trajectory of the Sun lead to wall encounters

and heliosphere quenching from cloud encounters

→ nucleosynthesis ejecta flows can reach the Solar System

Spectral details of positron annihilation line

Galactic Messengers

- Radioactivity provides a clock
- ²⁶Al radioactivity gamma rays trace nucleosynthesis ejecta over ~few Myrs
- Radioactive emission is independent of density, ionisation states, ...
- Positron annihilation
 ~traces CR propagation

GSI Colloquium, 13 Jun 2023

Perspectives: New/better observations?

GSI Colloquium, 13 Jun 2023

Learning from Gamma-Ray Spectroscopy - Summary

☆ Supernova explosions are not entirely spherically symmetric

- [©]⁵⁶Ni and how it reveals its radiation in SN2014J
 - \rightarrow SN Ia diversity; sub-Chandra models?
- ⁴⁴Ti image and line redshift in CasA; SN87A
 - \rightarrow ccSupernovae are fundamentally 3D/asymmetric

☆ Cycling of cosmic gas through sources and ISM is a challenge

- ^{CP 26}Al preferentially appears in superbubbles
 - \rightarrow massive-star ingestions rarely due to single WR stars or SNe
- ^{CC} the current Galactic SN rate is ~1/70 years

^{CF 60}Fe is a SN/wind ejecta diagnostic (SBs older than for ²⁶Al)

- ☆ Varied messengers complement each other with essential diagnostics
 - Radioactivity provides a unique and different view on cosmic isotopes (via gamma rays, stardust, CRs, sediments)
 - A next gamma-ray telescope (light-weight Compton telescope) in 2040+??; INTEGRAL ends 2029; COSI (2027) is a great first step ...

Neutron star collisions: explosive nucleosynthesis

GW170817 / AT2017gfo

gravitational-wave & γ-ray burst triggered multi-band follow-up of NSM

γ-ray line diagnostics of characteristic nuclear lines?

GW170817 was too distant!

(other NSMs will be even more...)

Hotokezaka+ 2016

Savchenko et al. 2017

GSI Colloquium, 13 Jun 2023