Computing the heart of matter Sonia Bacca, KPH & MITP

GSI, May 9th, 2023

The constituents of matter

p

115 years from the discovery of the nucleus

Ernest Rutherford, Nobel prize in 1908 $10^{-15} \text{ m} \le \text{ length} \le 10^{-14} \text{ m}$

 $eV \le energy \le 100 MeV$

Philosophical Magazine - Series 6, vol. 21 May 1911, p. 669-688

[669]

LXXIX. The Scattering of a and β Particles by Matter and the Structure of the Atom. By Professor E. RUTHERFORD, F.R.S., University of Manchester *.

not follow the probability law to be expected if such large deflexions are made up of a large number of small deviations It seems reasonable to suppose that the deflexion through a large angle is due to a single atomic encounter, for the chance of a second encounter of a kind to produce a large deflexion must in most cases be exceedingly small. A simple calculation shows that the atom must be a seat of an intense electric field in order to produce such a large deflexion at a single encounter.

2

The chart of nuclides

• What are neutron stars?

unstable nuclei

Terra Incognita

• What are the properties of exotic nuclei?

• How well do we understand nucleosynthesis?

Computing the heart of matter The theory perspective

- Start from neutrons and protons
- Solve the quantum mechanics of A interacting nucleons

$$H|\Psi\rangle = E|\Psi\rangle$$

 $H = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$

• Find numerically exact solutions or controlled approximations

Chiral effective field theory

$$\mathcal{L}=-rac{1}{4}G^a_{\mu
u}$$

In the limit of $\mathcal{M} \to 0$ the QCD Lagrangian is invariant under chiral symmetry

Chiral symmetry is explicit and spontaneous broken

Weinberg

 \mathcal{L}_{eff}

Compatible with explicit and spontaneous **chiral symmetry breaking**

Quark/gluon (high energy) dynamics

$G_{\mu\nu}G_{a}^{\mu\nu} + \bar{q}_L i\gamma_\mu D^\mu q_L + \bar{q}_R i\gamma_\mu D^\mu q_R - \bar{q}\mathcal{M}q$

Nucleon/pion (low energy) dynamics

$$\mathcal{L} = \mathcal{L}_{\pi\pi} + \mathcal{L}_{\pi N} + \mathcal{L}_{NN} + \dots$$

5

Chiral effective field theory

6

Coupling to the electroweak field

Cross Section $\sigma_{ew} \sim R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$

Electroweak operator

Also admits order-by-order expansion in chiral EFT

One first example

Big Bang Nucleosynthesis How it all started

- The first nucleus formed is deuterium D via $n p \rightarrow D \gamma$
- BBN leads to the formation of D, ³H, ³He, ⁴He, ⁶Li and ⁷Li

BBN is responsible for the synthesis of the light nuclei which took place within a few minutes after the Big Bang (time zero)

Credits: Focus.it

Big Bang Nucleosynthesis Bayesian analysis for uncertainty quantification

Express observable as

$$y(\nu) = y_{ref}(\nu) \sum_{n=0}^{\infty} c_n(\nu) (Q/\Lambda)^n$$

$$\delta y_k(\nu) = y_{\text{ref}}(\nu) \sum_{n=k+1}^{\infty} c_n(\nu) \left(Q/\Lambda\right)^n$$

- Calibrate a Gaussian process emulator using physics-based info on $c_n(\nu)$ as "prior"
- Calculate "Bayesian posterior" for $c_{n>k}(\nu)$, obtaining statistically interpretable truncation error, amounting to 0.2% at the highest order.

B. Acharya and SB, Phys. Lett. B 827, 137011 (2022)

What about reactions with heavier nuclei?

11

Experimental motivation

Stable Nuclei

Do we see the emergence of collective motions from first principle calculations?

Unstable Nuclei

The continuum problem

 $R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$

The Lorentz Integral Transforms

$$L(\sigma, \Gamma) = \frac{\Gamma}{\pi} \int d\omega \frac{R(\omega)}{(\omega - \sigma)^2 + \Gamma^2}$$

Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459

$$(H - E_0 - \sigma + i\Gamma) \mid \tilde{\psi} \rangle = \Theta \mid \psi_0 \rangle$$

Reduce the continuum problem to a bound-state-like equation

Solving the quantum many-body problem

Polynomial scaling

Systematically improvable approaches with controlled approximations: coupled-cluster theory, IMSRG, SCGF,...

An exponentially hard problem to solve

IBM Q Experience

Coupled-cluster theory

 $|\psi_0(\vec{r_1}, \vec{r_2}, ..., \vec{r_A})\rangle = e^T |\phi_0(\vec{r_1}, \vec{r_2}, ..., \vec{r_A})\rangle$

 $T = \sum T_{(A)}$

cluster expansion

Medium-mass nuclei

<u>SB et al., PRC 90, 064619 (2014)</u>

Exotic Nuclei

S.Kaufmann, J. Simonis, SB et al., PRL 104 (2020) 132505

$$2\alpha \int_{\omega_{ex}}^{\infty} d\omega \frac{R(\omega)}{\omega}$$

CCSD

Exotic Nuclei

S.Kaufmann, J. Simonis, SB et al., PRL 104 (2020) 132505

$$2\alpha \int_{\omega_{ex}}^{\infty} d\omega \frac{R(\omega)}{\omega}$$

CCSD

CCSD-T1

Most Exotic Nucleus N/Z=3

F. Bonaiti, SB, G.Hagen, PRC 105, 034313 (2022)

⁸He

Halo nucleus

Most Exotic Nucleus N/Z=3

F. Bonaiti, SB, G.Hagen, PRC 105, 034313 (2022)

⁸He

Halo nucleus

Neutron Stars Gravitational Waves

Credits: LIGO

Sept 14,2015, Binary Black Hole Mergers Abbott et al., PRL **116**, 061102 (2016)

Credits: R-Hurt/Caltech-JPL

Aug 17,2017, Binary Neutron Star Mergers GW170817 Abbott et al., PRL **119**, 161101 (2017)

In the era of multi-messenger astronomy, GW from neutron star mergers will constraints the nuclear EOS

Neutron Stars The nuclear equation of state

$$E(\rho, \delta) = E(\rho, 0) + S(\rho)\delta^2 + \mathcal{O}(\delta^4)$$

$$S(\rho) = S_0 + \frac{L}{3\rho_0}(\rho - \rho_0) + \frac{K_{sym}}{18\rho_0^2}(\rho - \rho_0)^2 + \dots$$

GW will provide constraints

But laboratory measurements on finite nuclei are crucial

S₀ and L, K_{symm} are property of the nuclear EOS

Neutron Stars In the laboratory

Parity violating electron scattering

$$\left| \sum_{\gamma} \left< + \right>_{Z^0} \left< + \right>_{Z^0} \left< - \left| M_{\gamma} + M_{Z^0} \right|^2 \sim |M_{\gamma}|^2 + 2M_{\gamma} (M_{\gamma})^2 + 2M_{\gamma}$$

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \approx -\frac{G_F q^2}{4\pi\alpha\sqrt{2}} \frac{Q_W F_W(q^2)}{ZF_{ch}(q^2)} \qquad \qquad \begin{array}{l} \text{Electric} \\ \text{charge} \\ \text{Weak} \\ \text{charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Weak} \\ \text{charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \\ \text{Charge} \end{array} \qquad \qquad \begin{array}{l} \text{Charge} \end{array} \qquad \qquad$$

Pb Radius Experiment

 $r_{\rm skin}(^{208}{\rm Pb}) = 0.33^{+0.16}_{-0.18} {\rm fm}$ **PREX-I** $r_{\rm skin}(^{208}{\rm Pb}) = 0.283 \pm 0.071 \text{ fm}$ PREX-II

CREX $r_{skin}(^{48}\text{Ca}) = 0.21 \pm 0.026(\text{exp}) \pm 0.024(\text{exp})\text{fm}$

unpolarized target

Ca Radius Experiment

Future: Mainz Radius Experiment @ MESA

Improve the precision by a factor of two wrt PREX-II

Neutron-skin thickness Comparison to calculations

B. Hu, W. Jiang et al., Nature Phys. 18, 1196 (2022)

25

Applications to Neutrino Physics

Neutrino Oscillations

The Nobel Prize in Physics 2015

Photo © Takaaki Kajita Takaaki Kajita Prize share: 1/2

Photo: K. McFarlane. Queen's University /SNOLAB Arthur B. McDonald Prize share: 1/2

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald *"for the discovery of neutrino oscillations, which shows that neutrinos have mass"*

oscillations \Rightarrow small masses \Rightarrow BSM physics

$$P_{\nu_e \to \nu_{\mu}} = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{2E_{\nu}}\right)$$

Neutrino Oscillations

Aims and Challenges

Electrons for neutrinos

✓-A scattering

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \,\mathrm{d}\omega} \bigg|_{\nu/\bar{\nu}} = \sigma_0 \left[\ell_{CC}\right]_{\nu/\bar{\nu}}$$

$R_{CC} + \ell_{CL} R_{CL} + \ell_{LL} R_{LL} + \ell_T R_T \pm \ell_{T'} R_{T'}$

Recent highlights 40Ca(e,e')X with LIT

Acharya, Sobczyk, SB, et al., in preparation

Recent highlights Spectral function formalism

SCGF: Rocco, Barbieri, PRC 98 (2018) 022501

<u>Sobczyk, SB, Hagen, Papenbrock, PRC 106, 034310 (2022)</u>

Towards neutrino scattering

Sobczyk and SB, to be submitted (2023)

e ,

33

Conclusions and Outlook

- Remarkable progress in ab initio calculations
- Electroweak reactions are fascinating because they allow to connect nuclear physics to other areas of physics
- Stay tuned for future progress!

B. Acharya, F. Bonaiti, W. Jiang, G. Hagen, T. Papenbrock, A. Schwenk, J. Simonis, J.E. Sobczyk, et al.

Thanks for your attention!

Thanks to all my collaborators:

