Update of the ALPIDE Si-tracker simulations for studies with quasi-free scattering reactions

José Luis Rodríguez-Sánchez

University of Coruña & USC 24th May 2023

R³B Si-tracker configurations

Stage I

Stage II

Stage III

Two arms

- 3 planes each
- 18 sensors per plane

Two/Three barrels (ideal geo.)

- 17/21 multi-Flex modules
- 9 sensors per module

Three (1st bent) barrels

- 17/21 multi-Flex modules
- 9 sensors per module
- Barrel with bent Si-sensors

2027/2028

Tracking station for stage I: Two arms configuration

Tracking station with 3 Flexes

Tracking modules for stage II: Barrel configuration

ALPIDE die on carrier card Thickness of 50 µm

-	Layer	Thk (µm)	Composition	ρ (g/cm ³
	Solder mask (2)	30	Epoxy (C ₂ H ₂)	1.250
	Conducting layers (2)	10	AI	2.699
	Substrate	75	Kapton	1.420
	Glue (2)	40	С	0.958
	Chip	50	Si	2.328
	C fleece (2)	20	С	0.400
	Cold plate	240	С	1.583

Inner side

Thickness of 565 µm

Vacuum chamber

Full geometries for stage I & II

CALIFA: Hector's geometry 2021

Note for target: 1.5 cm radius, 1.5 cm thick

(p,2p) events for three excitation energies: 0, 20 and 40 MeV, at 500 MeV/u

Comparison of **geometrical** efficiency

Two arms configuration

Barrel configuration

J.L. Rodríguez-Sánchez

Two arms configuration (2024): Missing mass resolution

Two arms configuration (2024): Excitation energy resolutions

Dependence on vertex Z

Two arms configuration (2024): Vertex reconstruction

Vertex resolution dependence on Z

J.L. Rodríguez-Sánchez

11

Simulation of gammas with an energy of 1MeV emitted by fragments at 500 MeV/u

Simulation of gammas with an energy of 1MeV emitted by fragments at 500 MeV/u

Doppler correction with ALPIDE tracking

Simulation of gammas with an energy of 1MeV emitted by fragments at 500 MeV/u

Attenuation of δ -electrons: Two arms

Beam of ²³⁸U @ 500MeV/u

Attenuation	%
1 st plane	50
1 st and 2 nd planes	79
Inverted flex	19

Attenuation of δ -electrons: Barrels

Expected δ -electron multiplicities in the barrel configuration

¹²C @ 500 MeV/u

²³⁸U @ 500 MeV/u

(p,2p)-reconstruction with δ -electrons

CALIFA selection in θ and ϕ (±5 deg) to

constrain the angular range for barrels

1.5 cm LH2 target (p,2p) events 40 **Delta electrons** (e-e hits or proton-e hits) 30 Counts 20 7% background 10 -10020 -80 -20 40 60 80 100 -60 -40 0 Z vertex [mm]

In total, we recover 93 % of (p,2p) events

Conclusions & Perspectives

Configuration	Resolution [MeV] (FWHM)	Tracking [μm] (FWHM)	(p,2p) efficiency* (%) [real geo.]
Two arms	2.65	360	~21[~18]
3 barrels (ALICE conf.)	2.85	370	~86 [~70]
3 barrels (1 st bent)	2.35	190	~86

- Implementation of new TRT configurations in R3BRoot
- Upgrade the existing analysis code for online analysis
- Test at Jülich:
 - Data analysis performance with UCESB&R3BRoot
 - · Position resolution and proton detection efficiency
 - First reconstruction of (p,2p) reactions

Two arms configuration (2024): 2 or 3 planes?

Missing energy reconstruction with 2 detector planes gives better results, this is because the straggling effects are larger than the ALPIDE position resolution

Configuration	Resolution [MeV] (FWHM)
2 planes per arm	3.11
3 planes per arm	3.31

Note for target: 1.5 cm radius, 1.5 cm thick

Comparison of modules and resolutions

Total thickness 363 um

No material before the ALPIDE sensors

Resolution in missing mass ~ 2.65 MeV

Barrels

Layer	Thk (µm)	Composition	ρ (g/cm ³)
Solder mask (2)	30	Epoxy (C ₂ H ₂)	1.250
Conducting layers (2)	10	AI	2.699
Substrate	75	Kapton	1.420
Glue (2)	40	С	0.958
Chip	50	Si	2.328
C fleece (2)	20	С	0.400
Cold plate	240	С	1.583

Figure 4.5: The stack of ALPIDE layers, as defined in the simulations

Total thickness 565 um

280 um of cooling layers (inner part of the barrel) before the ALPIDE sensors

Resolution in missing mass ~ 2.85 MeV

J.L. Rodríguez-Sánchez

Two arms configuration (2024): 2 or 3 planes?

Missing energy reconstruction with 2 detector planes gives better results, this is because the straggling effects are larger than the ALPIDE position resolution

Configuration	Resolution [MeV] (FWHM)
2 planes per arm	3.09
3 planes per arm	3.31

J.L. Rodríguez-Sánchez