

# SIMULATIONS AND AGENDA

R<sup>3</sup>B Collaboration Meeting, Budapest, 2023 Hector Alvarez Pol, Yassid Ayad, Meytal Duer, Alexandre Obertelli, Yelei Sun, Simone Velardita

TU Darmstadt | Institut für Kernphysik | A. Obertelli

EXPERIMENTAL METHOD



# The two-target method

First experiment with the HYDRA prototype in Feb. 2025 (G-073):

- → measure of the hypertriton interaction cross section and from this deduce its matter radius
  - direct measurement is difficult due to the short lifetime (237 ps)
- → extract the interaction cross section by measuring the mesonic decay vertex distribution
  - two measurements with two targets of thicknesses,  $d_1=1$  cm and  $d_2=6$  cm



$$rac{N_\Lambda(d_1)}{N_\Lambda(d_2)}\cdotrac{N_{0,d_2}}{N_{0,d_1}}\cdotig(1-e^{B\,d_2}ig)\cdot e^{-n\sigma_R(d_2-d_1)}-1+e^{-B\,d_1}=0$$
 where

$$egin{aligned} B &= \, n \, \sigma_{\Lambda R} + rac{1}{\gamma eta c \, au} - n \, \sigma_R \ N_{0,d_1} &= I \, t \, lpha \quad ext{and} \quad N_{0,d_2} = I \, t \, (1 - lpha) \end{aligned}$$

2

EXPERIMENTAL METHOD



# The two-target method

First experiment with the HYDRA prototype in Feb. 2025 (G-073):

- → measure of the hypertriton interaction cross section and from this deduce its matter radius
  - direct measurement is difficult due to the short lifetime (237 ps)
- → extract the interaction cross section by measuring the mesonic decay vertex distribution
  - two measurements with two targets of thicknesses,  $d_1=1$  cm and  $d_2=6$  cm



$$N_{\Lambda}(d_1) : rac{N_{0,d_2}}{N_{\Lambda}(d_2)} \cdot ig(1-e^{B\,d_2}ig) \cdot e^{-n\sigma_R(d_2-d_1)} - 1 + e^{-B\,d_1} = 0$$

#### Accepted experiment:

- -<sup>12</sup>C beam @1.9 GeV/A
- -12C targets max thickness 6 cm
- -Total beam time, t=8 days
- -Beam intensity, I=(1-5)·106 pps

| Radius (rms) [fm] | $\sigma_{\Lambda R}$ [mb] | $\delta\sigma_{\Lambda R}/\sigma_{\Lambda R}$ [%] |
|-------------------|---------------------------|---------------------------------------------------|
| 2.8 (no halo)     | $645\pm106$               | 17                                                |
| 4.9               | $861 \pm 129$             | 15                                                |
| 7.9               | $1062\pm134$              | 13                                                |

EXPERIMENTAL METHOD



# The two-target method

First experiment with the HYDRA prototype in Feb. 2025 (G-073):

- → measure of the hypertriton interaction cross section and from this deduce its matter radius
  - direct measurement is difficult due to the short lifetime (237 ps)
- → extract the interaction cross section by measuring the mesonic decay vertex distribution
  - ◆ two measurements with two targets of thicknesses, d<sub>1</sub>=1 cm and d<sub>2</sub>=6 cm



Paper submitted to EPJA, in review

### Method to evidence hypernuclear halos from a two-target interaction cross section measurement

Simone Velardita<sup>1</sup>, Hector Alvarez-Pol<sup>2</sup>, Thomas Aumann<sup>1,3,4</sup>, Yassid Ayyad<sup>2</sup>, Meytal Duer<sup>1</sup>, Hans-Werner Hammer<sup>1,4</sup>, Liancheng Ji<sup>1,4</sup>, Alexandre Obertelli<sup>1,4</sup>, and Yelei Sun<sup>1,4</sup>

- <sup>1</sup> Technische Universität Darmstadt, Fachbereich Physik, Darmstadt, D-64289, Germany
- <sup>2</sup> Universidade de Santiago de Compostela, Santiago de Compostela, E-15782, Spain
- <sup>3</sup> GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, D-64291, Germany

<sup>4</sup> Helmholtz Forschungsakademie Hessen f
ür FAIR, Frankfurt, D-60438, Germany

#### SIMULATIONS | PION



Simulation: 0.8 GeV  $\pi^-$  and secondaries (0 – 2 GeV)

- Kalman Filter adapted to HYDRA geometry (virtual planes).
- . Provides an estimate of the momentum with 0.1% of precision.
- Position reconstructed with about few mm of precision.
- . GLAD inhomogeneous magnetic field taken into account.
- · Next steps: origin of secondaries / rejection

## **PION TRACKING**



- . Detecting and separating curves in 3D point clouds.
- . Clustering point triplets instead of the original points.
- . Clustering process can be controlled by several parameters.
- . Light-weight and efficient C++ code ported into R3BROOT.



23.05.2023

TU Darmstadt | Institut für Kernphysik | A. Obertelli





**Fibers inside GLAD** – **new** (to be built) 2 double planes (x,y) of 0.1 cm thick fibers Air gap between fibers 0.01 cm X layers 15x15 cm<sup>2</sup>, Y layers 15x15 cm<sup>2</sup>

Fibers outside GLAD (Fib. 30-33) 2 double planes (x,y) of 0.1 cm thick fibers Air gap between fibers 0.01 cm X, Y layers 50x50 cm<sup>2</sup>



23.05.2023

#### 4 planes 44 paddles: 2.7x100x0.5 cm<sup>3</sup> Air gap between paddles 0.04 cm Air gap between planes 5 cm Plane 2 (4) shifted by half paddle compared to 1 (3)



TOFD



### **RECOIL TRACKING**

TU Darmstadt | Institut für Kernphysik | A. Obertelli

y [cm]

- Generate <sup>3</sup>He in large phase-space
  - → Bρ~uniform(8.8,14.1)
  - → angx~uniform(-0.22,0.07), angy~uniform(-0.08,0.08)
  - → vertex: just before the first fiber inside (uniformly covers fiber area)
- Run the sample through the simulation
  - → vacuum conditions: r3b\_cave.vacuum.geo
  - → new field map: R3BGladMap\_Bxyz\_X-3to3\_Y-1to1\_Z-4to13\_step10mm.root
  - → physics list: QGSP\_BERT\_EMV
- Using multi-dimensional fit (8 variables) to create functions for  $B\rho$ , angx, angy, x, y.
- f(fib1x,fib1T\_x,fib1y,fib1T\_y,fib2x,fib2T\_x,fib2y,fib2T\_y)
- → fib1x = x pos. at FibIN\_2
- $\rightarrow$  fib1T\_x = (FibIN2\_X-FibIN4\_X)/(FibIN2\_Z-FibIN4\_Z)
- → fib1y = y pos. at FibIN\_1
- $\rightarrow$  fib1T\_y = (FibIN1\_X-FibIN3\_X)/(FibIN1\_Z-FibIN3\_Z)
- → and the same for '2' with  $IN \rightarrow OUT$
- f is fitted up to 8th order Monomials







23.05.2023

TU Darmstadt | Institut für Kernphysik | A. Obertelli

- Energy ~ Gaus(1.555,0.1344)AGeV
- Production vertex
  - →  $tgt_z \sim uniform(0,6)cm$
  - → tgtx,y~ Gaus (0, FWHM 0.4) cm & inside tgt. radius of 0.25 cm
- Angular spread (Dubna cascade model+Fermi breakup)
  - → angx ~ Landau(0.016,0.006)
  - → angy ~ Landau(-0.29,0.8)
- Energy-loss of hypertriton in the target
- Phase-space decay to  $\pi^{-+3}$ He at the decay position
  - → decay\_vertex = tgt + decay\_length(z-direction)
  - → decay\_length =  $β^*c^*t$  (β of hypertriton)
  - → t ~ exp(-L/( $\beta c\tau$ ))=exp(-t/( $\gamma \tau$ ))  $\tau$ =0.237 ns







40000

20000

14



TU Darmstadt | Institut für Kernphysik | A. Obertelli

HYPERTRITON

**DECAY GENERATOR** 

8

E/A [GeV]



- Use functions to get  $B\rho_1$ ,  $angx_1$ ,  $angy_1$ , and  $x_1$ ,  $y_1$  at (I)
- Combine with pion track from TPC to get decay vertex
- Another simulated <sup>3</sup>He sample
  - → again large phase space
  - → vertex\_z  $z_0$ ~uniform(0,50) ) (0 = target)
  - → MDF functions for  $B\rho_0$ , angx<sub>0</sub>, angy<sub>0</sub> (II)
  - $\rightarrow f(\mathsf{B}\rho_1, \mathsf{angx}_1, \mathsf{angy}_1, \mathsf{x}_1, \mathsf{y}_1, \mathsf{z}_0)$
- Momentum at decay vertex



#### Resolutions extracted with simulated data from hypertriton decay treated as exp. data (see next slides):



23.05.2023

TU Darmstadt | Institut für Kernphysik | A. Obertelli

#### Signal amplitude in fibers

 $A_{up/down} = \Delta E \times Y_s(\lambda) \times \epsilon_{trap} \times \epsilon_{att} \times \epsilon_{PPE}$ 

- ΔE = energy loss in fiber [MeV]
- $Y_s(\lambda)$  = light yield. SCSF78 (Kuraray fib.) Photons/MeV
- ε<sub>trap</sub> = fraction of emitted light which falls into the two cones in which
- it undergoes total internal reflections. For square Kuraray fiber 4.2%.
- $\epsilon_{att}$  = attenuation in the fiber over a distance d:
- d = L/2+y(x) up, d=L/2-y(x) down L fiber length  $\propto \exp(-d/\lambda)$ ,  $\lambda=74$  cm
- $\epsilon_{PPE}$  = photon detection efficiency: QE( $\lambda$ )x $\epsilon_{qeo}$  :

 $QE(\lambda)$  quantum efficiency &  $\epsilon_{geo}$  geometrical efficiency

- → SiPM MPPC S13360-3050 (for PW): QE(λ)=40%, ε<sub>qeo</sub>=74%
- → MAPMT H13700 (existing fibers): QE( $\lambda$ )=33%,  $\epsilon_{aeo}$ =80%

#### **TOFD** light attenuation

- Attenuation length for EJ204 scintillator  $\lambda$  = 140 cm
- Bar length L = 100 cm
  - →  $E_{up} \propto E_{loss} \exp(-(L/2-y)/\lambda)$ ,  $E_{down} \propto E_{loss} \exp(-(L/2+y)/\lambda)$

## SIGNAL AMPLITUDES



23.05.2023

TECHNISCHE

UNIVERSITÄT DARMSTADT

#### SIMULATIONS

#### TECHNISCHE UNIVERSITÄT DARMSTADT

#### Efficiency x acceptance

| N <sub>acc</sub> /N <sub>gen</sub> | [%] |
|------------------------------------|-----|
| FibIN_1                            | 86  |
| FibIN_1+2                          | 80  |
| FibIN_1+2+3                        | 71  |
| FibIN_1+2+3+4                      | 64  |
| FibIN + FibOUT_1                   | 57  |
| FibIN + FibOUT_1+2                 | 53  |
| FibIN +<br>FibOUT_1+2+3            | 48  |
| FibIN +<br>FibOUT_1+2+3+4          | 44  |
| FibIN + FibOUT +<br>TOFD           | 42  |

(in proposal: 60%)

## RESULTS

• From tracking of both pion+<sup>3</sup>He the decay vertex is reconstructed

→ use different resolutions: 5, 10, 15 mm

- → smear generated vertex z with  $Gauss(z_{0},\sigma)$
- Simulated sample includes both pion+<sup>3</sup>He
- → Pion acceptance: track length>1 cm in TPC + PW ( $E_{loss}$ >0.5 MeV)
- → smear generated vertex z with Gaussian( $z_{0},\sigma$ )
- → smear momentum with resolution of 1%
- Reconstruct invariant mass

•

٠



vtxz=5 mm  $\rightarrow \sigma$ =1.4 MeV vtxz=10 mm  $\rightarrow \sigma$ =1.6 MeV vtxz=15 mm  $\rightarrow \sigma$ =1.8 MeV

(in proposal: 1.5 MeV)

TU Darmstadt | Institut für Kernphysik | A. Obertelli

23.05.2023



- Finalize **pion tracking** simulations
- Merge of fragment and TPC simulations for hypertriton decay events ⇒ optimize and validate detector geometry and positions
- Add **small fiber detector** in front of production target (beam position)
- Background event simulations with final geometry
  - $\Rightarrow$  ion back flow and confirm primary beam intensity llimit
  - $\Rightarrow$  fine tune topological cuts for data analysis
- Laser ionization in simulations
  - $\Rightarrow$  compare to measurements in GLAD to extract spacial resolution

## SIMULATION NEXT STEPS

- June 2023: detailed drawings and procedure for installation and dismounting at R3B
- End of July 2023: Full TPC characterized with source and cosmic rays (GET electronics)
- August-September 2024: implementation of laser system, operation with TPC @ TUDa
- October or November 2024: laser operation in GLAD, with / without B field (1 week) Time necessary for full installation: 2 days + 1 day tuning and flushing Tests duration: 1 day + 1 day spare Time necesary for removing TPC from GLAD: < 1 day</li>
- December 2023-January 2024: operation tests with SRS + VMM3 continuous readout
- **February 2024**: tests of TPC inside GLAD (1 day in parasitic)
- Around July 2024: option for additional tests at CERN (if found necessary, within RD51 collaboration)
- February 2025: experiment at R3B

## AGENDA



23.05.2023