Identifying quasi-elastic events in the SRC experiment

Hang Qi, 05/23/2023

Short-range Correlation in asymmetric nuclei

Identify SRC in ¹²C and ¹⁶C using missing mass method Using mean field reaction ¹²C(p,2p)¹¹B as reference channel

Experimental setup

- **Beam information**
 - ¹⁶C beam, 1.25 GeV/u
 - ¹²C beam, 1.25 GeV/u
- Intensity: 1×10^5 pps

SRC channels ¹⁶C(p,2pn)¹⁴B* ¹⁶C(p,2pp)¹⁴Be* ¹²C(p,2pn)¹⁰B* ¹²C(p,2pp)¹⁰Be*

Inverse kinematics

p2p selection ¹²C data, ~ 1/10 of total ¹²C data

Large contamination from inelastic and FSI

p2p selection

- Contamination from inelastic events at small θ angles \bullet

Coplanar angular correlation visible

Fragment Identification Using charge v. A/Z

A/Z for Boron fragments

¹¹B tagging

• FSI contributions suppressed but still exist

11B tagging

Missing Energy [GeV]

11B tagging

 θ_2 [degree]

Opening Angle v. Missing Energy Using 2D correlations to identify quasi-elastic events

Missing Energy [GeV]

Missing Energy [GeV]

Quasi-elastic events selection Kinematic distribution in data and simulation

Quasi-elastic events selection

Conclusions and future-work

- Quasi-elastic events identification using missing mass method: fragment tagging suppresses inelastic scattering and FSI
- Analysis of reference channel ¹²C(p,2p)¹¹B kinematics
 - Check detector calibration with reference channel kinematics
 - Simulation data comparison
- SRC identification

Backup Slides

Outline

- ¹²C data with ¹¹B tagging
- Quasi-elastic events selection

•
$$p_{\text{miss}} = p_3 + p_4 - p_{\text{tg}}$$
 in ¹²C res

- $E_{\text{miss}} = m_N p_{\text{miss}} \cdot E$

st frame

• p_3, p_4 : kinetic energy and angle of protons from CALIFA analysis

SRC study for neutron-rich nuclei

Limitations of this study:

- Inverse kinematics is the only way to study nuclei with asymmetry > 1.5
- Results might be massdependent

M. Duer et al. (CLAS), Nature 2018.

17

p2p selection **Kinetic distribution after initial selection**

Missing Mass Squared [GeV²]

